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Preface 

This is a textbook of stat 1st1cs for medical students, doctors, medical 
researchers, and others concerned with medical data . I hope that it will also 
be of interest to students whose principal interest is statistics or mathematics, 
who often find that the practical application of statistical methods is the most 
difficult part of the subject . 

The fundamental concepts of study design, data collection, and data 
analysis are explained by illustration and example. For those who wish to go a 
little further in their understanding, some of the mathematical background to 
the techniques described is also given, largely as appendices to the chapters 
rather than in the main text . 

The material covered includes all the statistical work that would be 
required for a course in medicine and for the examinations of most of the 
royal colleges . It includes the design of clinical trials and epidemiological 
studies , data collection, summarizing and presenting data, probability, the 
Binomial , Normal , Poisson, t and Chi-squared Distributions, standard 
errors, confidence intervals , tests of significance, large sample and small 
sample comparisons of means , the use of transformations, regression and 
correlation, methods based on ranks, contingency tables , measurement 
error, reference ranges , mortality data, vital statistics and the choice of statis
tical method. 

The book is firmly grounded in medical data, particularly in medical 
research, and the interpretation of the results of calculations in their medical 
context is emphasized . Except for a few obviously invented numbers used to 
illustrate the mechanics of calculations, a l l  the data in the examples and exer
cises are real, from my own research and statistical consultation, or from the 
medical literature, to which reference is made where possible. 

There are two kinds of exercise. Each chapter has five multiple choice 
questions of the true or false type . Multiple choice questions can cover a large 
amount of material in a short time, so are a very useful tool for revision . As 
MCQs are widely used in postgraduate examinations, these exercises should 
also be useful to those preparing for memberships. All the MCQs have 
solutions, with reference to the appropriate part of the text or a detailed 
explanation for most of the answers . Each chapter also has one long exercise. 
Although these usually involve calculation, I have tried to avoid merely 
slotting figures into formulae. These exercises include not only the applica-
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tion of statistical techniques but also the interpretation of the results in the 
light of the source of the data. 

I wish to thank many people who have contributed to the writing of this 
book . Firstly, there are the many medical students, doctors, research 
workers , and nurses whom it has been my pleasure to teach , and from whom I 
have learned so much . Secondly, the book contains many examples drawn 
from research carried out with other statisticians, epidemiologists , and social 
scientists , particularly Doug Altman, Ross Anderson, Mike Banks, Beulah 
Bewley, and Walter Holland. These studies could not have been done without 
the assistance of Patsy Bailey, Bob Harris, Rebecca McNair ,  Janet Peacock, 
Swatee Patel, and Virginia Pollard. Thirdly, the clinicians and scientists with 
whom I have collaborated or who have come to me for statistical advice have 
not only taught me a lot about medical data, but many of them have left me 
with data which are used here, including Thomas Bewley, Peter Fish, Nick 
Hal l ,  Tessi Hanid, Michael Hutt, Ian Johnston, Pam Luthra, Hugh Mather, 
Daram Maugdal , Douglas Maxwell ,  Charles Mutoka, Tim Northfield, Paul 
Richardson , and Alberto Smith. I am particularly indebted to John Morgan, 
as Chapter 1 6  is partly based on his work. The manuscript was typed by Sue 
Nash, Sue Fisher, Susan Harding, and Sheila Skipp . An earlier draft of the 
book was read by David Jones , Doug Altman, Robin Prescott , Klim 
McPherson, and Stuart Pocock. Their comments have made this a better 
book than it would otherwise have been; the faults which remain are my own. 
Special thanks are due to my head of department, Ross Anderson , for all his 
support and to the staff of Oxford University Press . Most of all, I thank 
Pauline Bland for her unfailing confidence and encouragement. 

London 

January 1 987 
M. 8. 
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1. Introduction 

1 . 1 .  The scope of statistics 

Statistics, in the sense of numerical data, surround us in daily l ife .  We may be 
told that nine out of ten cats prefer a certain catfood, or that the annual rate 
of inflation is 9 .5  per cent , and are expected to understand what is meant . 
There have been acrimonious public debates about changes in the calculation 
of the unemployment rate, and the public are expected to decide on 
competing claims about the relative numbers of nuclear warheads. Statistics 
as an academic study is the science of assembling and interpreting numerical 
data, and we can see that some knowledge of this would be useful in many 
fields . 

In clinical medicine, statistical methods are used to determine the accuracy 
of measurements , to compare measurement techniques, to assess diagnostic 
tests, to determine normal values , to estimate prognosis and to monitor 
patients . In the administration of medical services we are concerned with 
such things as bed use and perinatal mortality rates . It is in medical research , 
however, that statistics becomes most intimately involved, and it is with this 
area of application that this book is principally concerned. This is not to say 
that the book is addressed to the present or future researcher only. The 
medical profession is fond of research , but many doctors never try it. What 
nearly all doctors do is use the results of medical research ,  whether they are 
prescribing a new drug or advising a patient to give up smoking. In order to 
read the results of the enormous amount of research that pours into the 
medical journals, all doctors should have some understanding of the ways in 
which studies are designed, and data are collected, analysed and interpreted. 
That is what this book is about . 

1.2 .  Statistics and medical research 

In the past thirty years medical research has become deeply involved with the 
techniques of statistical inference. The work published in medical journals is 
full of statistical jargon and the results of statistical calculations. This 
acceptance of statistics , though gratifying to the medical statistician , may 
even have gone too far. More than once I have told a colleague that he did not 
need me to prove that his difference existed , as anyone could see it, only to be 
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told in turn that without the magic of the p-value he could not have his paper 
published. 

Statistics has not always been so popular with the medical profession .  
Statistical methods were first used i n  medical research in the nineteenth 
century by workers such as Pierre-Charles-Alexandre Louis, William Farr, 
and John Snow. Snow's studies of the modes of communication of cholera, 
for example, made use of epidemiological techniques upon which we have 
still made little improvement. Despite the work of these pioneers , however, 
statistical methods did not become widely used in clinical medicine until the 
middle of the twentieth century. It was then that the methods of randomized 
experimentation and statistical analysis based on sampling theory which had 
been developed by Fisher and others were introduced into medical research, 
notably by Bradford Hil l .  It rapidly became apparent that research in 
medicine raised many new problems in both design and analysis, and much 
work has been done towards solving these by clinicians, statisticians, and 
epidemiologists. 

Although considerable progress has been made in such fields as the design 
of clinical trials, there remains much to be done in developing research 
methodology in medicine. It seems likely that this will always be so, for every 
research project is something new, something which has never been done 
before. Under these circumstances we make mistakes . No piece of research 
can be perfect and there will always be something which, with hindsight, we 
would have changed. Furthermore, it is often from the flaws in a study that 
we can learn most about research methods . For this reason, the work of 
several researchers is described in this book to illustrate the problems into 
which their designs or analyses led them. I do not wish to imply that these 
people were any more prone to error than the rest of the human race, or that 
their work was not a valuable and serious undertaking. Rather, I want to 
learn from their experience of attempting something extremely difficult, 
trying to extend our knowledge, so that researchers and consumers of 
research may avoid these particular pitfalls in the future. We are sure to find 
more. 

1.3.  Statistics and mathematics 

Many people are discouraged from the study of statistics by a fear of being 
overwhelmed by mathematics. It is true that many professional statisticians 
are also mathematicians, but not all are, and there are many very able 
appliers of statistics to their own fields . It is possible, though perhaps not 
very useful, to study some branches of statistics simply as a part of mathe
matics, with no concern for its application at all . Other aspects may be 
discussed without appearing to use any mathematics at all, as in Darrell 
Huff's Ho w to lie with statistics (Huff 1 954) . 
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The aspects of statistics described in this book can be understood and 
applied with the use of simple algebra. Only the algebra which is essential for 
explaining the most important concepts is given in the main text . This means 
that several of the theoretical results used are stated without a discussion of 
their mathematical basis . This is done when the derivation of the result would 
not aid much in understanding the application . For many readers the reason
ing behind these results is not of great interest . For the reader who does not 
wish to take these results on trust ,"several chapters have appendices in which 
simple mathematical proofs are given . These appendices are designed to help 
increase the understanding of the more mathematically inclined reader and to 
be omitted by those who find that the mathematics serves only to confuse . 

1 .4.  Statistics and computing 

Practical statistics has always involved large amounts of calculation . When 
the methods of statistical inference were being developed in the first half of 
the twentieth century, calculations were done using penci l ,  paper , tables, 
slide rules, and with luck a very expensive mechanical adding machine. Older 
books on statistics spend much time on the details of carrying out calcula
tions and any reference to a 'computer' means a person who computes, not 
an electronic device. The development of the digital computer has brought 
changes to statistics as to many other fields. Calculations can be done 
quickly, easily and, we hope, accurately with a range of machines from 
pocket calculators with built-in statistical functions to powerful computers 
analysing data on many thousands of subjects. There is therefore no need to 
consider in detail the problems of manual calculation . The important thing is 
to know what the results of calculations actually mean. Indeed, the danger 
in the computer age is not so much that people may carry out complex 
calculations wrongly, but that they may apply very complicated statistical 
methods without knowing why, or without knowing what the computer 
output means. More than once I have been approached by a researcher 
bearing a computer print-out two inches thick, and asking what it all means. 
Sadly, too often, the answer is that another tree has died in vain . 

Computers are a great benefit to statistics in that calculations which would 
once have taken days can now be done in minutes , and statisticians use them a 
lot . Most of the calculations in this book were done using a computer and all 
of the graphs were drawn with one. But the widespread avai lability of 
computers means that more calculations are being done, and being 
published, than ever before, and the chance of inappropriate statistical 
methods being applied may actually have increased. This arises partly 
because people regard their data analysis problems as computing problems, 
not statistical ones, and seek advice from computer experts rather than statis
ticians. They often get good advice on how to do it, but rather poor advice 
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about what to do, why to do it and how to interpret the results afterwards . It 
is therefore more important than ever that doctors, the consumers of 
research, understand something about the uses and limitations of statistical 
techniques. 

1.5 .  The scope of this book 

This book is intended as an introduction to some of the statistical ideas 
important to medicine. It does not tell you all you need to know to do medical 
research. Once you have understood the concepts discussed here, it is much 
easier to learn about the techniques of statistical analysis required to answer 
any particular question. There are several excellent standard works which 
describe the solutions to problems in the analysis of data (Armitage 1 97 1 ;  
Colton 1 974; Snedecor and Cochran 1 980) and also more specialized books 
to which reference will be made where required . 

What I hope the book will do is to give enough understanding of the statis
tical ideas commonly used in medicine to enable the doctor to read the 
medical literature competently and critically. It covers enough material for 
an undergraduate course in statistics for medical students and enough to 
answer statistical questions set in the examinations of most of the medical 
Colleges . At the time of writing, as far as can be established, it covers the 
material required for the MRCP, FRCS, FFA, MRCGP and MRCOG. It is 
not adequate for the MRC Psych . ,  MFCM or FRCR, which require 
considerably more. 

When working through a textbook, it is useful to be able to check your 
understanding of the material covered . Like most such books, this one has 
exercises at the end of each chapter, but to ease the tedium most of these are 
of the multiple-choice type. There is also one long exercise, usually involving 
calculations, for each chapter. In keeping with the computer age, inter
mediate results are given to avoid laborious calculation. Thus, the exercises 
can be completed quite quickly and the reader is advised to try them . 
Solutions are given at the end of the book, in full for the Jong exercises and as 
brief notes with references to the relevant sections in the text for multiple
choice questions (MCQs) .  Readers who would like more exercises are recom
mended to read Osborn ( 1 979) . 

Finally, a question many students of medicine ask as they struggle with 
statistics: is it worth it? As Altman ( 1 982) has argued, bad statistics leads to 
bad research , and bad research is unethical . Not only may it give misleading 
results, which can result in good therapies being abandoned and bad ones 
adopted, but it may also expose patients to potentially harmful new treat
ments for no good reason . Medicine is a rapidly changing field . In ten years' 
time, many of the therapies currently prescribed and many of our ideas about 
the causes and �revention of disease will be obsolete. They wil l  have been 
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replaced by new therapies and new theories, supported by research studies 
and data, of the kind described in this book, and probably presenting many 
of the same problems in interpretation . Doctors will be expected to decide for 
themselves what to prescribe or advise on the basis of these studies . So a little 
knowledge of medical statistics would be one of the most useful things all 
doctors could acquire during their training. 



2 .  The design of experiments 

2 . 1 .  Comparing treatments 

It is useful to distinguish between two broad types of study in medical 
research:  observational and experimental . In observational studies, aspects 
of an existing situation are observed, as in a survey or a clinical case study. 
We then try to interpret our data to give an explanation of how the observed 
state of affairs has come about . In experimental studies, we do something in 
order to observe the result. This chapter is concerned with the way statistical 
thinking is involved in the design of experiments , particularly comparative 
experiments where we wish to study the difference between the effects of two 
or more treatments . These experiments may be carried out in the laboratory 
on animals or human volunteers, in the hospital or community on human 
patients , or, in the case of preventive trials , on currently healthy people. We 
call trials of treatments on human subjects clinical trials. The general 
principles of experimental design are the same, although there are special 
precautions that must be taken when experimenting with human subjects .  
The experiments whose results most concern clinicians are clinical trials ,  so 
the discussion will deal mainly with them. 

Suppose we want to know whether a new treatment is more effective than 
the present standard treatment. We could approach this in a number of  ways, 
as follows . 

(a) We could compare the results of the new treatment on new patients 
with records of previous results using the old treatment. This is seldom 
convincing, because there may be many differences between the patients who 
received the old treatment and the patients who will receive the new. As time 
passes, the general population from which patients come may become 
healthier, standards of ancillary treatment and nursing care may improve, or 
the social mix in the catchment area of the hospital may change. The nature 
of the disease itself may change. All these factors may produce changes in the 
patients' apparent response to treatment .  For example, Christie ( 1 979) 
showed this by studying the survival of stroke patients in 1 978, after the intro
duction of a C-T head scanner, with that of patients treated in 1 974, before 
the introduction of the scanner. He took the records of a group of patients 
treated in 1 978 ,  who received a C-T scan, and matched each of them with a 
patient treated in 1 974 of the same age, diagnosis and level of consciousness 
on admission. As the first column of Table 2 . 1 shows, patients in 1 978 clearly 
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Table 2 .1 .  Analysis of the difference in survival for matched pairs of 
stroke patients (Christie 1979) 

Pairs with 1 978 better than 1 974 

Pairs with same outcome 

Pairs with 1 978 worse than 1 974 

C-T scan in 1978 No C-T scan in 1 978 

9 (3 1 %) 

1 8  (62%) 

2 (7%) 

34 (38%) 

3 8  (43%) 

1 7  ( 1 9%) 

7 

tenaed to have better survival than similar patients in 1 974. The scanned 1 978 
patient did better than the unscanned 1 974 patient in 3 1  per cent of pairs, 
whereas the unscanned 1 974 patient did better that the scanned 1 978 patient 
in only 7 per cent of pairs . It appears that the scanner was of great benefit. 
However, he also compared the survival of patients in 1 978 who did not 
receive a C-T scan with matched patients in 1 974. As the second column of 
Table 2 . 1 shows, these patients too showed a marked improvement in 
survival from 1 974 to 1 978 .  The 1 978 patient did better in 38 per cent of pairs 
and the 1 97 4 patients in only 19 per cent of pairs .  We see that there is a general 
improvement i n  survival, over a short period of time. If we did not have the 
data on the unscanned patients from 1 978 we might be forgiven for inter
preting these data as evidence for the effectiveness of the C-T scanner. 
Historical controls like this are seldom very convincing. We need to compare 
the old and new treatments concurrently. 

(b) We could ask people to volunteer for the new treatment and give the 
standard treatment to those who do not volunteer . The difficulty here is that 
people who volunteer and people who do not volunteer are l ikely to be 
different in many ways apart from the treatments we give them. We shall 
consider an example of the effects of volunteer bias in Section 2 .4 .  

(c) We can allocate patients to the new treatment or the standard treat
ment and observe the outcome. The way in which patients are allocated to 
treatments can influence the results enormously. The following example (Hill 
1 962) illustrates this . Between 1 927 and 1944 a series of trials of BCG vaccine 
were carried out in New York (Levine and Sackett 1 944) . Children from 
families where there was a case of tuberculosis were allocated to a vaccination 
group and given BCG vaccine, or to a control group who were not 
vaccinated . Between 1 927 and 1 932 a physician was told to vaccinate half the 
children, the choice of which children to allocate being left to

· 
him . As Table 

2.2 shows, there was a clear advantage in survival for the BCG group in this 
part of the series. However, there was also a clear tendency for the physician 
to vaccinate the children of more cooperative parents, and to leave those of 
less cooperative parents as controls .  In 1 933 this was changed and allocation 
to treatment or control was done centrally. This was done by assigning 
alternate children to control and vaccine. The difference in degree of 
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Table 2.2.  Results of studies of BCG vaccine in New York City (Hill 1962)  

Average no. 
of visits Proportion of 
to clinic parents with good 

No. of Death during ! st cooperation as 
No. of deaths rate year of judged by visiting 

Period of trial children from TB (%) follow-up nurses 

1 927-32 Selection made by physician: 

BCG group 445 3 0.67 3 .6 43% 

Control group 545 1 8  3 .30 1 .7 24% 

1 933-44 Alternate selection carried out centrally: 

BCG group 566 8 1 .4 1  2.8 40% 

Control group 528 8 1 .52 2 .4  34% 

cooperation between the parents of the two groups of children disappeared, 
and so did the difference in mortality. (Note that these were a special group of 
children, from families where there was tuberculosis. In large trials using 
children drawn from the general UK population, BCG was shown to be 
effective in greatly reducing deaths from tuberculosis (Hart and Sutherland 
1 977) . )  

We  see that different methods o f  allocation to treatment produce different 
results. This is because the method of allocation may not produce groups of  
subjects which are comparable, i.e . similar in every respect except the 
treatment. We need a method of allocation to treatments in which the charac
teristics of subjects will not affect their chance of being put into any 
particular group . The only generally satisfactory method of doing this which 
has been found to date is random allocation. 

2.2 .  Random allocation 

If we want to decide which of two people receive an advantage, in such a way 
that each has an equal chance of receiving it, we use a simple, widely accepted 
method. We toss a coin. This is used to decide the way football matches 
begin, for example, and all appear to agree that it is fair .  So if we want to 
decide which of two subjects should receive a vaccine, we can toss a coin. 
Heads - and the first subject receives the, vaccine; tails - and the second 
receives it. If we do this for each pair of subjects we build up two groups 
which have been assembled without any characteristics of the subjects them
selves influencing the allocation in any way. The only differences between the 
groups will be those due to chance. As we shall see later (Chapters 8- 14  
inclusive) , statistical methods enable us  to  measure the likely effects of  
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chance. Any difference between the groups which is larger than this is likely 
to be due to the treatment, since there will be no other differences between the 
groups . This method of dividing subjects into groups is called random 

allocation or randomization. 

Several methods of randomizing have been in use for centuries, though not 
for clinical trials .  Coins have been mentioned; there are also dice, cards, lots 
and spinning wheels .  Some of the theory of probability which we shall use 
later to compare randomized groups was first developed as an aid to 
gambling . There are therefore many ways in which we can achieve random 
allocation . Coins, dice, and cards can all be used, but they have their dis-
advantages . In a clinical trial, flipping a coin in the presence of a patient may 
not inspire confidence . It is also too easy for the experimenter to cheat by 
tossing the coin again if he doesn't like the allocation . (The temptation to do 
this can be very strong . )  It can also be very tedious in a large experiment . 

A different, non-physical randomizing method uses random number 
tables . Table 2 . 3  provides an example, a table of 1000 random digits .  These 
are more properly called pseudo-random numbers , as they are generated by a 
mathematical process . They are available in tables (Kendall and Babington 

Table 2.3. 1000 random digits 

I-4 5-8 9-I2 I3-I6 1 7-20 2I-24 25-28 29-32 33-36 37-40 

I 36 45 88 3I 28 73 59 43 46 32 00 32 67 I5 32 49 54 55 75 I7 
2 90 5 1  40 66 I8 46 95 54 65 89 I6 80 95 33 I5 88 1 8  60 56 46 
3 98 4I 90 22 48 37 80 3 1  9 1  39 33 80 40 82 38 26 20 39 7 1  82 
4 55 25 7 1  27 1 4  68 64 04 99 24 82 30 73 43 92 68 I8 99 47 54 
5 02 99 1 0  75 77 2I 88 55 79 97 70 32 59 87 75 35 1 8  34 62 53 
6 79 85 55 66 63 84 08 63 04 00 I8 34 53 94 58 0 1  55 05 90 99 
7 33  53 95 28 06 8 1  34 95 I3 93 37 I6 95 06 I5 9 1  89 99 37 I6 
8 74 75 1 3  I3 22 1 6  37 76 1 5  57 42 38 96 23 90 24 58 26 7 1  46 
9 06 66 30 43 00 66 32 60 36 60 46 05 1 7  3 1  66 80 9 1  0 1  62 35 

1 0  92 83 3 1  60 87 30 76 83 I7 85 3I 48 I3 23 I7 32 68 I4 84 96 
II 6 1  2 1  3 1  49 98 29 77 70 72 1 1  35 23 69 47 I4 27 1 4  74 52 35 
12 27 82 0 1  0 1  74 4 1  38 77 53 68 53 26 55 1 6  35 66 3 1  87 82 09 

I3 6 1  05 50 IO 94 85 86 32 1 0  72 95 67 88 2 1  72 09 43 73 03 97 
1 4  II 57 85 67 94 9 1  49 48 35 49 39 4 1  80 1 7  54 45 23 66 82 60 
1 5  1 5  1 6  08 90 92 86 1 3  32 26 01 20 02 72 45 94 74 97 1 9  99 46 
1 6  22 09 29 66 1 5  44 76 74 94 92 48 1 3  75 85 8I 28 95 4 1  36 30 
1 7  69 1 3  53 55 35 87 43 23 83 32 79 40 92 20 83 76 82 6 1  24 20 
1 8  08 29 79 37 00 33 35 34 86 55 IO 9 1  1 8  86 43 50 67 79 33  58 
19  37 29 99 85 55 63 32 66 7 1  98 85 20 3I 93 63 9I 77 2I 99 62 
20 65 II I4 04 88 86 28 92 04 03 42 99 87 08 20 55 30 53 82 24 
21 66 22 8 1  58 30 80 2 1  IO 1 5  53 26 90 33  77 5 1  1 9  I7 49 27 1 4  
22 37 2 1  77 I3 69 3 1  20 22 67 1 3  46 29 75 32 69 79 37 23 32 43 
23 51  43 09 72 68 3 8  05 77 I4 62 89 07 37 89 25 30 92 09 06 92 
24 31 59 37 83 92 55 1 5  3 1  2 1  24 03 93 35 97 84 6I 96 85 45 5 1  
25 79 05 43 69 52 93 00 77 44 82 9I 65 II 7I 25 37 89 I3 63 87 
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Smith 1 97 1 )  or can be produced by computer and some types of calculator. 
We can use tables of random numbers in many ways to achieve random 
allocation.  Two approaches will give the general idea . First , let us randomly 
allocate 20 subjects to two groups, which we shall label A and B. We first 
choose a random starting point in the table, using one of the physical 
methods described above . (I used decimal dice. These are twenty-sided dice, 
numbered 0 to 9 twice, which fit our number system more conveniently than 
the traditional cube . )  The random starting point was row 22, column 20, and 
the first twenty digits were 3, 4, 6, 2, 9 ,  7, 5, 3, 2, 6, 9, 7, 9, 3 ,  7 ,  2 ,  3, 3, 2 and 
4. We now allocate subjects corresponding to odd digits to group A and those 
corresponding to even digits to B. The first digit , 3, is odd, so the first subj ect 
goes into group A. The second digit , 4, is even, so the second subject goes into 
group B, and so on. We get the following allocation: 

Subject Digit Group Subject Digit Group 

3 A 1 1  9 A 
2 4 B 12  7 A 
3 6 B 1 3  9 A 
4 2 B 14  3 A 
5 9 A 1 5  7 A 
6 7 A 1 6  2 B 
7 5 A 1 7  3 A 
8 3 A 1 8  3 A 
9 2 B 1 9  2 B 

10  6 B 20 4 B 

The system described above gave us unequal numbers in the two groups, 1 2  in 
A and 8 in B .  We sometimes want the groups to be of equal size. One way to 
do this would be to proceed as above until either A or B has 10 subjects in it, 
all the remaining subjects going into the other groups. This is satisfactory in 
that each subject has an equal chance of being allocated to A or B ,  but it has a 
disadvantage. There is a tendency for the last few subjects all to have the same 
treatment . This characteristic sometimes worries researchers , who feel that 
the randomization is not quite right. In statistical terms the possible alloca
tions are not equally likely. If we use this method for the random allocation 
described above, the tenth subject in group A would be reached at subject 1 5  
and the last five subjects would all be in group B .  We can ensure that all 
randomizations are equally likely by using the table of random numbers in a 
different way. For example, we can use the table to draw a random sample of  
1 0  from 20, as  described in  Section 3 .4. These would form group A, and the 
remaining 10, group B. 
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There are many ways of using random-number tables to achieve random 
allocation.  These methods of using random numbers and the generation of  
the random numbers themselves are simple mathematical operations well 
suited to the computers which are now readily available to researchers . It is 
very easy to program a computer to carry out random allocation,  and once a 
program is available it can be used over and over again for further 
experiments .  

Having looked a t  the theory and techniques of random allocation, we now 
look at whether it works in practice. One of the first randomized experiments 
in medicine was the trial carried out by the Medical Research Council (MRC 
1 948) to test the efficacy of streptomycin for the treatment of pulmonary 
tuberculosis .  In this study the target populatiowwas patients with acute 
progressive bilateral pulmonary tuberculosis, �ed 1 5-30 years . All cases 
were bacteriologically proved and were cd�sidered unsuitable for other 
treatments then available. The trial took pla'ce in three centres and allocation 
was by a series of random numbers , drawn bp for each sex at each centre . The 
streptomycin group contained 55 patients,£nd the control group 52 cases . The 
condition of the patients on admission is shown in Table 2 .4 .  The frequency 
distributions of temperature and sedimentation rate were similar for the two 
groups; if anything, the treated (S) group were slightly worse. However, this 
difference is no greater than could have arisen by chance, which, of course, is 
how it arose. The two groups are almost certain to be slightly different in 
some characteristics , especially with a fairly small sample, and we can take 
account of this in the analysis. 

After six months, 93 per cent of the S group survived, compared to 73 per 
cent of the control group. There was a clear advantage to the streptomycin 
group . The relationship of survival to initial condition is shown in Table 2 . 5 .  

Table 2.5.  Survival a t  six months in the MRC 
streptomycin trial, stratified by initial condition 
[MRC 1 948) 

Maximum evening 
temperature group 
during first 
observation week Outcome S group C group 

98-98.9 Of Alive 3 4 
Dead 0 0 

99-99 .9 Of Alive 1 3  I I  
Dead 0 I 

1 00-100.9 Of Alive 1 5  1 2  
Dead 0 5 

I O I  0f and above Alive 20 I I  
Dead 4 8 
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Survival was more likely for patients with lower temperatures, but the 
difference in survival between the S and C groups is clearly present within the 
temperature categories. 

2.3 .  Methods of allocation without random numbers 

I n  the second stage of the New York studies of BCG vaccine, the children 
were allocated to treatment or control alternately. Researchers often ask why 
this method cannot be used instead of randomization, arguing that the order 
in which patients arrive is random, so the groups thus formed will be 
comparable. There are two reasons for not doing this . First , although the 
patients may appear to be in a random order, there is no guarantee that this is 
the case. We could never be sure that the groups are comparable. Secondly, 
this method is very susceptible to mistakes , or even to cheating In the patients' 
perceived interest . I f  it is possible to cheat so that a patient who looks 
particularly in need will receive the allocator's preferred treatment, the 
temptation to do so can be very great . In the BCG studies some patients were 
excluded for non-cooperation, but even allowing for this there is con
siderable imbala.nce in favour of BCG. There are several examples reported 
in the literature of alterations to treatment allocations . Holten ( 1 95 1 ) 
reported a trial of anticoagulant therapy for patients with coronary 
thrombosis . Patients who arrived for treatment on even dates were to be 
treated with anticoagulant therapy and patients arriving on odd dates were to 
receive no extra treatment and would form the control group. The author 
reports that some of the clinicians involved found it 'difficult to remember' 
the criterion for allocation. As a result, 50 patients admitted on even dates did 
not receive anticoagulant therapy and 10 who were admitted on odd dates did 
receive it .  The results are shown in Table 2 .6 .  Overall ,  the treated patients did 
better than the controls but, curiously, the controls on the even dates 
(wrongly allocated) did considerably better than control patients on the odd 
dates (correctly allocated) and even managed to do marginally better than 
those who received the treatment . I n  fact the best outcome, treated or not, 
was for those who were incorrectly allocated. All this must make us wonder 

Table 2.6. Outcome of a quasi-random clinical trial with 
errors in allocation (Holten 1951 )  

Even dates 

Outcome Treated 

Survived 1 25 
Died 39 (250Jo) 

Total 1 64 

Odd dates 

Control Treated Control 

39 IO  1 25 
11 (220/o) 0 (00/o) 8 1  (360Jo) 

50 IO 206 
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whether any groups of patients in this trial were correctly allocated, and 
about the extent to which any confidence can be placed in the results. 

Other methods of allocation set out to be random but can fa!J into this sort 
of difficulty. For example, we could use physical mixing to achieve 
randomization . This is quite difficult to do. As an experiment, take a deck of  
cards and order them in suits from ace of clubs to king of spades . Now shuffle . 
them in the usual way and examine them. You will probaply see many runs of  
several cards which remain together in order . Cards must be shuffled very 
thoroughly indeed before the ordering ceases to be apparent. The physical 
randomization method can be applied to an experiment by marking equal 
numbers of slips of paper with the names of the treatments , sealing them into 
envelopes and shuffling them. The treatment for a subject is decided by with
drawing an envelope. This method was used in another study of anti
coagulant therapy by Carleton et al. ( 1 960) . These authors reported that in 
the latter stages of the trial some of the clinicians involved had attempted to 
read the contents of the envelopes by holding them up to the light, in order to 
allocate patients to their own preferred treatment. 

Interfering with the randomization can actually be built into the allocation 
procedure, with equally disastrous results. In the Lanarkshire Milk Experi
ment, discussed by Student (193 1 ) ,  10 000 school children received three
quarters of a pint of milk per day and 10 000 children acted as controls . The 
children were weighed and measured at the beginning and end of the six
month experiment . The object was to see whether the milk improved the 
growth of children. The allocation to the 'milk' or control group was done as 
follows : 

The teachers selected the two classes of pupils, those getting milk and chose acting as 
controls,  in two di fferent ways. In certain cases they selected them by ballot and i n  
others on a n  alphabetical system . In any particular school where there was any group 
to which these methods had given an undue proportion of well-fed or i l l-nourished 
children, others were substituted to obtain a more level selection. 

The result of this was that the control group had a markedly greater average 
height and weight than the milk group. Student interpreted this as follows: 

Presumably this discrimination in height and weight was not made deliberately, but i t  
would seem probable that the teachers, swayed by the very human feeling that the 
poorer chi ldren needed the milk more than the comparatively well-to-do, must have 
unconsciously made too large a substitution for the i l l-nourished among the [milk 
group] and too few among the controls and that this unconscious selection affected 
secondarily, both measurements . 

Whether the bias was conscious or not, it spoiled the experiment, despite 
being from the best possible motives. 

There is one non-random method which can be used successfully in clinical 
trials .  I t  is called minimization . In this method, new subjects are allocated to  
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treatments so as t o  make the treatment groups as similar as possible i n  terms 
of the important prognostic factors. I t  is beyond the scope of this book, but 
see Pocock ( 1 983) for a description. 

2 .4. Volunteer bias 

One of the most interesting trials ever done was the field trial of Salk polio
myelitis vaccine carried out in 1 954 in the USA (Meier 1 977). This was carried 
out using two different designs simultaneously, due to a dispute about the 
correct method . In some districts, second-grade schoolchildren were invited 
to participate in the trial, and randomly allocated to receive vaccine or an 
inert saline injection. In other districts, all second-grade children were 
offered vaccination and the first- and third-grade left unvaccinated as 
controls .  The argument against this 'observed-control' approach was that 
the groups may not be comparable, whereas the argument against the 
randomized-control method was that the saline injection could provoke 
paralysis in infected children . The results are shown in Table 2 .  7. In the 
randomized-control areas the vaccinated group clearly experienced far less 
polio than the control group. Since these were randomly allocated, the only 
difference between them should be the treatment , which is clearly preferable 
to saline. However, the control group also had more polio than those who 
had refused to participate in the trial . The difference between the control and 
the not-inoculated group is both in treatment (saline injection) and in 
selection; they are self-selected as volunteers and refusers, respectively. The 
observed-control areas enable us to distinguish between these two factors . 
The polio rates in .the vaccinated children are very similar in both parts of the 
study, as are the rates in the not-inoculated second-grade children . It is 
the two control groups which differ. These were selected in different ways : 
in the randomized-control areas they were volunteers, whereas in the 

Table 2.7. Result of the field trial of Salk poliomyelitis 
vaccine [Meier 1977)  

Paralytic polio 

Number in Number Rate per 
Study group group of cases 100 000 

Randomized control 
Vaccinated 200 745 33 1 6  
Control 20 1 229 1 1 5 57 
Not inoculated 338 778 1 2 1  3 6  

Observed control 
Vaccinated second-grade 221 998 38 1 7  
Control first- and third-grade 725 173 330 46 
Unvaccinated second-grade 1 23 605 43 35 
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observed-control areas they are everybody eligible, both potential volunteers 
and potential refusers. Now suppose that the vaccine were saline instead , and 
that the randomized, vaccinated children had the same polio experience as 
those receiving saline. We would expect the following number of cases : 

200 745 x 
57 

= 1 1 4 
100 000 

The total number of cases in the randomized areas would be 1 14 + 1 1 5 + 
1 2 1  = 350 and the rate per 100 000 would be 47. This compares very closely 
with the rate of 46 in the observed-control first- and third-grade group. Thus 
it seems that the principal difference between the saline-control group of 
v�lunteers and the not-inoculated group of refusers is selection, not 
treatment. 

There is a simple explanation for this. Polio is a viral disease transmitted by 
the faecal - oral route. Before the development of vaccine almost everyone in  
the population was exposed to  i t  a t  some time, usually in childhood. In the 
majority of cases, paralysis does not result and immunity is conferred 
without the child being aware of having been exposed to polio .  In a smal l  
minority of cases, about one in 200, paralysis and occasionally death occurs 
and a diagnosis of polio is made. The older the exposed individual is, the 
greater the chance of paralysis developing. Hence, children who are 
protected from infection by high standards of hygiene are likely to be older 
when they are first exposed to polio than those children from homes with low 
standards of hygiene, and thus more likely to develop the clinical disease. 
There are many factors which may influence parents in their decision as to 
whether to volunteer or refuse their child for a vaccine trial . These may 
include education, personal experience, current illness, and others, but they 
certainly include interest in health and hygiene. Thus in this trial the high-risk 
children tended to be volunteered and the low-risk children tended to be 
refused . The high-risk ,  volunteer, control children had 68 per cent more cases 
of polio than the low-risk refusers . 

I n  many diseases, the effect of volunteer bias is opposite to this . Poor 
conditions are related both to refusal to participate and to high risk ,  whereas 
volunteers tend to be low risk. The effect of volunteer bias is then to produce 
an apparent difference in favour of the treatment. We can see that com
parisons between volunteers and other groups can never be reliable indicators 
of treatment effects. 

In the observed control areas, quite apart from the non-random age 
difference, the vaccinated and control groups are not comparable. However, 
it is possible to make a reasonable comparison in this study by comparing all 
second-grade children, both vaccinated and refused, to the control group. 
The rate in  the second-grade children is 23 per 1 00 000, which is less than the 
rate of 46 in the control group, demonstrating the effectiveness of  the 
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vaccine. The ' treatment' which we are evaluating is not vaccination itself, but 
a policy of offering vaccination and treating those who accept . A similar 
problem can arise in a randomized trial , for example in evaluating the effec
tiveness of health check-ups (South-east London Screening Study Group 
1977) . Subjects were randomized to a screening group or to a control group. 
The screening group were invited to attend for an examination; some 
accepted and were screened and some refused. When comparing the results in 
terms of subsequent mortality, it was essential to compare the controls to the 
screening groups containing both screened and refusers . For example, the 
refusers may have included people who were already too ill to come for 
screening. The important point is this . The random allocation procedure 
produces comparable groups and it is these we must compare, whatever 
selection may be made within them . 

2.5 .  Cross-over designs 

Sometimes it is possible to use a subject as her or his own control . For 
example, when comparing analgesics in the treatment of arthritis, patients 
may receive in succession a new drug and a control treatment . The response 
to the two treatments can then be compared for each patient . These designs 
have the advantage of removing variability between subjects .  We can carry 
out a trial with far fewer subjects than would be needed for a two-group trial . 

Although all subjects receive all treatments, these trials must still be 
randomized . In the simplest case of treatment and control, patients may be 
given two different regimes : control followed by treatment and treatment 
followed by cont!"ol. These may not give the same results, e .g .  there may be a 
long-term carry-over effect which makes treatment followed by control show 
less of a difference than control followed by treatment . Subjects are, there
fore, assigned to a given order at random. It is possible in the analysis of 
cross-over studies to estimate the size of any carry-over effects which may be 
present .  I f  there are large carry-over effects the second treatment in the 
sequence may not give a reliable comparison. In this case the results of the 
first treatment can be analysed as a two-group trial, losing the advantage of 
the cross-over. 

As an example of the advantages of a cross-over trial, consider a trial of 
pronethalol in the treatment of angina pectoris (Pritchard et al. 1 963) . 
Angina pectoris is a chronic disease characterized by attacks of acute pain. 
Patients in this trial received either pronethalol or an inert control treatment 
(or placebo) in four periods of two weeks - two periods on the drug and two 
on the control treatment . These periods were in random order. The outcome 
measure was the number of attacks of angina experienced . These were 
recorded by the patient in a diary. Twelve patients took part in the trial . The 
results are shown in Table 2 . 8 .  The advantage in favour of pronethalol is 
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Table 2.8. Results of a trial of pronethalol for the treatment of 
angina pectoris (Pritchard et al. 1963) 

Number of attacks while 
on 

Difference 
Patient number Placebo Pronethalol Placebo-PronethaJol 

1 7 1  29 42 
2 323 348 - 23 
3 8 1 7 
4 1 4  7 7 
5 23 1 6  7 
6 34 25 9 
7 79 65 1 4  
8 60 4 1  1 9  
9 2 0 2 

1 0  3 0 3 
1 1  1 7  1 5  2 
1 2  7 2 5 

shown by 1 1  of the 1 2  patients reporting fewer attacks of pain while on 
pronethalol than while on the control treatment . I f  we had obtained the same 
data from two separate groups of patients instead of the same group under 
two conditions, it would be far from clear that pronethalol is superior 
because of the huge variation between subjects .  Using a two-group design, we 
would need a much larger sample of patients to demonstrate the efficacy of  
the treatment . 

Cross-over designs can be useful for laboratory experiments on animals or 
human volunteers . They can only be used in clinical trials where the treatment 
will not affect the course of the disease and where the patient's condition 
would not change appreciably over the course of the trial . A cross-over trial 
could be used to compare different treatments for the control of arthritis or 
asthma, for example, but not to compare different regimes for the manage
ment of myocardial infarction . However, a cross-over trial cannot be used to 
demonstrate the long-term action of a treatment, as the nature of the design 
means that the treatment period must be limited . As most treatments of  
chronic disease must be  used by the patient for a long time, often several 
years, a two-sample trial of long duration is usually required to investigate 
fully the effectiveness of the treatment. Pronethalol , for example, was later 
found to have some unacceptable side-effects in long-term use. 

2.6. Selection of experimental subjects 

We have discussed the allocation of subjects to treatments at some length ,  but 
we have not considered where they come from.  The way in which subjects are 
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selected for an  experiment may have an  effect on  its outcome. I n  practice, 
we are usually limited to subjects which are easily available to us. For 
example, in an animal experiment we must take the latest batch from the 
animal house. In a clinical trial of the treatment of myocardial infarction, we 
must be content with patients who are brought into our hospital . In experi
ments on human volunteers we sometimes have to use the researchers 
themselves. 

As we shall see more fully in Chapter 3, this has important consequences 
for the interpretation of results . In trials of myocardial infarction, for 
example, we would not wish to conclude that, say, the survival rate with a 
new treatment in  a trial in London would be the same as in a trial in  
Edinburgh. The patients may have a different history of diet, for example, 
and this may have a considerable effect on the state of their arteries and hence 
on their prognosis . I ndeed, i t  would be very rash to suppose that we would get 
the same survival rate in a hospital a mile down the road. What we rely on is 
the comparison between randomized groups from the same population of 
subjects, and hope that if a treatment reduces mortality in London it will also 
do so in Edinburgh. This may be a reasonable supposition, but it cannot be 
proved on statistical grounds alone. Sometimes in extreme cases it turns out 
not to be true. The BCG vaccine has been shown by large, well-conducted 
randomized trials to be effective in reducing the incidence of tuberculosis in 
children in the UK. However, in India it appears to be less effective (Lancet 
1 980) . This may be because the amount of exposure to tuberculosis is so 
different in the two populations. 

Given that we can only use the experimental subjects available to us, there 
are some principles which we use to guide our selection from them. As we 
shall see later, the lower the variability between the subjects in an experiment 
is, the better chance we have of detecting a treatment difference if i t  exists . 
This means that uniformity is desirable in our subjects. In  an animal 
experiment this can be achieved by using animals of the same strain raised 
under controlled conditions. In a clinical trial we usually do this by restricting 
our attention to patients of a defined age group and severity of disease. The 
Salk vaccine trial only used children in one school year. In the streptomycin 
trial the subjects were restricted to patients with acute bilateral pulmonary 
tuberculosis, bacteriologically proved, aged between 1 5  and 30 years, unsuit
able for other current therapy. Even with this narrow definition there was still 
considerable variation in the patients, as Tables 2.4 and 2 . 5  show. 

In a clinical trial it is also important to make sure that everyone has the 
disease we wish to treat . Patients with a different disease are not only poten
tially being wrongly treated themselves, but may make the results very 
difficult to interpret . 

Restricting attention to a particular subset of patients, useful though it 
may be, can lead to difficulties . For example, a treatment shown to be 
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effective and safe in young people may not necessarily be so in the elderly. 
Trials have to be carried out on the sort of patients it is proposed to treat. 

2.7.  Response bias and placebos 

The knowledge that she or he is being treated may alter a patient ' s  response to 
treatment. This is called the placebo effect. A placebo is a pharmacologically 
inactive substance given as if it were an active treatment . The placebo effect 
may take many forms, from a desire to please the doctor to measurable 
biochemical changes in the brain. Mind and body are intimately connected, 
and unless the psychological effect is actually part of the treatment we usually 
try to eliminate such factors from treatment comparisons. This is particularly 
important when we are dealing with subjective quantities such as assessment 
of pain or well-being. 

A fascinating example of the power of the placebo effect is given by 
Huskisson ( 1 974) . Three active analgesics, aspirin, Codis and Distalgesic, 
were compared with an inert placebo . Twenty-two patients each received the 
four treatments in a cross-over design. The patients reported pain relief on a 
four-point scale, from 0 = no relief to 3 = complete relief. The changes in 
pain relief are shown in Fig. 2 . 1 .  All the treatments produced some pain 
relief, maximum relief being experienced after about two hours . The three 
active treatments were all superior to placebo, but not by very much . The 
remarkable aspect of the trial was that the four drug treatments were given in 
the form of tablets identical in shape and size, but each drug was given in four 
different colours. Tqis was done so that patients could distinguish the drugs 
received to say which they preferred. Each patient received four different 
colours, one for each drug, and the colour combinations were allocated 
randomly. Thus some patients received red placebos, some blue and so on. 
The comparison of pain relief associated with colour of placebo are shown in 
Fig .  2 . 1 .  Red placebo were markedly more effective than other colours, and 
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were just as effective a s  the active drugs ! I n  this study not only is the effect o f  
a pharmacologically inert placebo in  producing reported pain relief demon
strated, but so is the wide variability and unpredictability of this response. 
We must clearly take account of this in trial design. Incidentally, we should 
not conclude that red placebos always work best . There is, for example, some 
evidence that patients being treated for anxiety prefer tablets to be in a 
soothing green, and that depressive symptoms respond best to a lively yellow 
(Schapira et al. 1 970). 

In any study of humans it is desirable that the subjects should not be able to 
tell which treatment is which . In a study to compare two treatments this 
should be done by making the treatments as similar as possible. Where there 
is no treatment an inactive placebo should be used . 

Placebos are not always possible or ethical . In the MRC trial of strepto
mycin, where the treatment involved several injections a day for several 
months ,  it was not regarded as ethical to do the same with an inert saline 
solution, and no placebo was given . In the Salk vaccine trial, the inert saline 
injections were placebos . It could be argued that paralytic polio is not likely 
to respond to psychological influences, but how could we be really sure of 
this? Further, the certain knowledge that a child had been vaccinated may 
have altered the risk of exposure to infection as parents allowed the child to 
go swimming, for example. Finally, the use of a placebo may also reduce the 
risk of assessment bias as we shall see in Section 2 . 8  below. 

2 .8. Assessment bias and double-blind studies 

The response of subjects is not the only thing affected by knowledge of the 
treatment. The assessment by the researcher of the response to treatment may 
also be influenced by the knowledge of the treatment. 

Some outcome measures do not allow for much bias on the part of  the 
assessor. For example, if the outcome is survival or death, there is little possi
bility that unconscious bias may affect the observation . However, if we are 
interested in an overall clinical impression of the patient 's progress, or in 
changes in an X-ray picture, the measurement may be influenced by our 
desire (or otherwise) that the treatment should succeed. It is not enough to be 
aware of this danger and allow for it .  We soon have the similar problem of 
'bending over backwards to be fair' .  Even such an apparently objective 
measure as blood pressure can be influenced by the expectations of the 
experimenter, and special measuring equipment has been devised to avoid 
this (Rose et al. 1 964) . 

We can avoid the possibility of such bias by using blind assessment, that is , 
the assessor does not know which treatment the subject is receiving. I f  a 
clinical trial cannot be conducted in such a way that the clinician in charge 
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Table 2.9. Assessment of radiological appearance at 
six months as compared with appearance on 
admission (MRC 1 948} 

Radiological assessment S Group C Group 

Considerable improvement 28 51 OJo 4 80Jo 
Moderate or slight improvement 1 0  1 8 %  1 3  25% 
No material change 2 40Jo 3 60Jo 
Moderate or slight deterioration 5 90Jo 1 2  23070 
Considerable deterioration 6 1 1  OJo 6 1 1 %  
Deaths 4 7% 1 4  27% 

Total 55 1 OOOJo 52 I OOOJo 

does not know the treatment, blind assessment can still be carried out by an 
external assessor .  When the subject does not know the treatment and blind 
assessment is used, the trial is said to be double blind. Where the subject can 
distinguish between treatments but the assessor cannot, the t rial is single 

blind. 

We can see that placebos may be just as useful for avoiding assessment bias 
as for avoiding response bias. The subject is unable to tip the assessor off as 
to treatment, and there is l ikely to be less material evidence to indicate to an 
assessor what it is. In the anticoagulant study by Carleton et al. ( 1960) 
described above, the treatment was supplied through an intravenous drip. 
Control patients had a dummy drip set up, with a tube taped to the arm but no 
needle inserted, primarily to avoid assessment bias. In the Salk trial , the 
injections were coded and the code for a case was only broken after the 
decision had been made as to whether the child had polio and, if  so, of what 
severity. 

In the streptomycin trial, one of the outcome measures was radiological 
change. X-Ray plates were numbered and then assessed by two radiologists 
and a clinician, none of whom knew to which patient or treatment the plate 
belonged . They did the assessment independently, and only discussed a plate 
if  they had not all come to the same conclusion. Only when a final decision 
had been arrived at was the link between plate and patient made. The results 
are shown in Table 2 .9 .  The clear advantage of streptomycin is shown in the 
considerable improvement of over half the S group, compared to only 8 per 
cent of the controls. 

2.9. Laboratory experiments 

So far we have looked at clinical trials, but exactly the same principles apply 
to laboratory research on animals .  It may well be that in this area the 
principles of randomization are not so well understood and even more critical 
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attention is needed from the reader of research reports. One reason for this 
may be that great effort has been put into producing genetically similar 
animals, raised in conditions as close to uniform as is practicable. The 
researcher using such animals as subjects may feel that the resulting animals 
show so little biological variability that any natural differences between them 
will be dwarfed by the treatment effects. This is not necessarily so, as the 
following examples il lustrate. 

A colleague was looking at the effect of tumour growth on macrophage 
counts in rats .  The only significant difference was between the initial values 
in tumour-induced and non-induced rats, that is, before the tumour-inducing 
treatment was given. There was a simple explanation for this surprising 
result . The original design had been to give the tumour-inducing treatment to 
each of a group of rats . Some would develop tumours and others would not, 
and then the macrophage counts would be compared between the two groups 
thus defined. In the event , all the rats developed tumours. In an attempt to 
salvage the experiment my colleague obtained a second batch of animals ,  
which he did not treat, to act as controls. The difference between the treated 
and untreated animals was thus due to differences in parentage or environ
ment, not to treatment. 

That problem arose by changing the design during the course of the experi
ment. Problems can arise from ignoring randomization in the design of a 
comparative experiment .  Another colleague wanted to know whether a 
treatment would affect weight gain in mice. Mice were taken from a cage one 
by one and the treatment given, until half the animals had been treated . 
The treated animals were put into smaller cages, five to a cage, which were 
placed together in a constant-environment chamber. The control mice were 
in cages, also placed together in the constant-environment chamber. When 
the data were analysed, it was discovered that the mean initial weight was 
greater in the treated animals than in the control group. In a weight-gain 
experiment this could be quite important ! It may have been that when 
the experimenter was picking up the animals to apply the treatment, she 
found the larger animals easier to pick up. What that experimenter 
should have done was to place the mice in the boxes , give each box a place 
in the constant-environment chamber, then allocate the boxes to treatment 
or control at random. We would then have two groups which were com
parable in every respect except treatment, both in initial values and in any 
environmental differences which may exist in the constant-environment 
chamber. 

These examples are given to show that even when the experimental material 
is as uniform as laboratory animals, biological variability is still present . 
Randomization was devised to cope with this and it is the most effective 
method we have . 
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2 . 10. Experimental units 

In the weight-gain experiment described above, each box of mice contained 
five animals .  These animals were not independent of one another, but inter
acted. In a box the other four animals formed part of the environment of the 
fifth, and might influence its growth. The box of five mice is called an experi

mental unit. An experimental unit is the smallest group of subjects in an 
experim�nt whose response cannot be affected by other subjects . This is 
important, as we need to know the amount of natural variation which exists 
between experimental units before we can decide whether the treatment effect 
is distinguishable from this natural variation. The accuracy with which we 
can estimate this depends on the number of experimental units (see 
Chapter 1 0) .  

The most extreme case arises when there i s  only one experimental unit per 
treatment . For example, consider a health education experiment involving 
two schools. In one school a special health education programme was 
mounted, aimed to discourage children from smoking . Both before and 
afterwards , the children in each school completed questionnaires about 
cigarette smoking. After the campaign, there were fewer smokers reported in  
the school where the health education had taken place than in the other, 
whereas before, the proportions of smokers had been similar. In this example 
the school is the experimental unit . The children may influence one another in  
their cigarette smoking habits and in their reactions to the health education 
programme. What happens in a school will be affected by changes in staff 
and pupils as well as more widespread factors such as advertising. There is no 
reason, therefore, to suppose that two schools should have the same 
proportion of smokers among their pupils, or that two schools which do have 
equal proportions of smokers will remain so. In this study the researchers 
found that smoking rates in the two schools were closer before the treatment 
than after . However, this may be due to the treatment or to other differences 
between and changes in the schools . We cannot tell from the data. This 
experiment would be much more convincing if we had several schools and 
randomly allocated them either to receive the health education programme or 
be control. We would then look for a consistent difference between changes 
in cigarette smoking in the treated and in the control schools . 

2 . 1 1 .  Further points about trial design 

There are many aspects of experimental design which we have not yet 
discussed. These include experiments to compare several factors at once. For 
example, we might wish to study the effect of a drug at different doses in the 
presence or absence of a second drug, with the subject standing or supine. 
This is usually designed as a factorial experiment, where each subject receives 
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every possible combination of treatments. These designs are unusual in 
clinical research but are sometimes used in laboratory work. They are 
described in more advanced texts (Armitage 1 97 1 ;  Snedecor and Cochran 
1 980). 

The trials described above all had a fixed sample size, decided at the start of 
the experiment . Because in medicine it is desirable to expose as few patients as 
possible to potentially hazardous treatments, sequential designs have been 
developed in which the data are analysed as they are collected. As soon as the 
difference between treatments is large enough to be convincing, the trial is 
stopped (Armitage 1 975). 

We have yet to discuss the choice of sample size. To do this we need to see 
how data are analysed . We shall re�urn to this in Chapter 9. 

Finally, we have yet to mention the ethics of clinical trials .  The objection to 
randomized experimentation may be made that we are withholding a 
potentially beneficial treatment from patients . However, any biologically 
active treatment is potentially harmful ,  and we are surely not justified in 
giving potentially harmful treatments to patients before the benefits have 
been demonstrated conclusively. Without properly conducted and controlled 
clinical trials to support it, each administration of a treatment to a patient 
becomes an uncontrolled experiment, whose outcome, good or bad, cannot 
be predicted . 

For accounts of the theory and practice of clinical trials, see Pocock ( 1 983) 
and Johnson and Johnson ( 1 977). 

Exercise 2M 

(Each b ranch is either true or false . )  

1 .  In an experiment t o  compare two treatments, subjects are allocated at 

random so that: 

(a) the sample may be referred to a known population; 

(b) the experimenter wil l not know which treatment the subjects receive; 

(c) the subjects will get the treatment best suited to them; 
(d) the two groups will be as similar as possible, apart from treatment; 
(e) treatments may be assigned according to the characteristics of the 

subject . 

2 .  In a double-blind clinical trial : 

(a) the patients do not know which treatment they receive; 
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(b) each patient receives a placebo; 

(c) the patients do not know that they are in a trial; 

(d) each patient receives both treatments; 
(e) the clinician making assessment does not know which treatment the 

patient receives. 

3. In a trial of a new vaccine, children were assigned at random to a 

'vaccine' and a 'control' group. The 'vaccine' group were offered 

vaccination, which two-thirds accepted. 

(a) The group which should be compared to the controls is all children who 
accepted vaccination. 

(b) Those refusing vaccination should be included in the control group. 

(c) The trial is double blind. 

(d) Those refusing vaccination should be excluded. 

(e) The trial is useless because not all the treated group were vaccinated . 

4. Cross-over designs for clinical trials: 

(a) may be used to compare several treatments; 

(b) involve no randomization; 

(c) require fewer patients than do designs comparing independent groups; 

(d) are useful for comparing treatments intended to alleviate chronic 
symptoms; 

(e) use the patient as his own control. 

5. Placebos are useful in clinical trials: 

(a) when two apparently similar active treatments are to be compared; 

(b) to guarantee comparability in non-randomized trials ;  

(c) because the fact of being treated may itself produce a response; 

(d) because they may help to conceal the subject's treatment from assessors; 

(e) when an active treatment is to be compared to no treatment. 

Exercise 2E 

The following is a paraphrase of a research report which appeared in a major 
journal . It has been extensively rewritten for the purpose of the exercise and 
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so  does not necessarily represent the views of  the original authors . Read the 
report and then answer the questions. 

A study of infants at risk of sudden death 

Introduction 

Babies sometimes die unexpectedly, for no apparent reason . Many theories 
have been advanced to explain this, from babies sleeping so deeply that they 
stop breathing to deficiencies in immune response or murder by parents .  
None of these has won universal acceptance and indeed there may be no one 
reason for these deaths. These deaths are often called cot deaths or sudden 
infant death syndrome. This study aims to identify high-risk children with a 
view to preventing unexpected deaths. 

In a previous paper , the authors have reported an investigation of factors 
related to unexpected death in babies . This was done by comparing the 
routine obstetric and perinatal records of babies who died unexpectedly with 
those of a control group who did not die. The deaths were all babies who died 
in a defined period of time in an English town, and for each death the control 
was the next birth to be registered . Using these data a scoring system was 
devised using a statistical method called discriminant analysis, to predict 
which babies would be deaths and which would be controls. It was found that 
a combination of eight variables best distinguished between deaths and 
controls . Deaths were identified by a combination of low maternal age, 
mother's blood group not A, urinary infection or polyhydraminos during 
pregnancy, long second-stage labour, high birth order (i .e . child has brothers 
and sisters), prematurity, and intention not to breast feed . It is not suggested 
that these are all directly causal factors, but they are a combination which 
should enable us to say whether a future child has a high risk of unexpected 
death .  At birth, the data could be used to calculate a score which would be 
related to the risk of death and used to separate children into a high-risk and a 
low-risk group . Resources could then be concentrated on the high-risk 
children to try to prevent unexpected deaths. The cut-off point was chosen so 
that about 1 5  per cent of children would be in the high-risk group. 

The purpose of the study reported here was two-fold: 

(a) to test the ability of the scoring system to select a high-risk group; 
(b) to see whether deaths can be reduced by increased surveillance of high

risk infants . 

Method 

Each week-day during 1 973 and 1 974 the score of each new baby born in the 
study town was calculated and infants designated as high- or low-risk. After 
excluding infants with gross congenital anomalies, some of whom might be 
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expected to die, the high-risk infants were allocated randomly to two groups: 
observation and control . Because of holidays , on eight days in Spring 1 973 all 
1 6  high-risk babies were allocated to control . To avoid overloading the 
surveillance team, between 7 July and 14 September 1 974, 40 per cent of high
risk children were allocated to the observation group and 60 per cent to the 
control group . For the rest of the study period 50 per cent of high-risk 
children were allocated to observation and to control .  

The observation group were invited to participate in the study. The sur
veillance consisted of a clinical observation within 48 hours of birth, a second 
at five weeks, and ten visits to the home in the first 20 weeks of l ife by 
specially appointed health visitors . Some parents refused to allow all or some 
of this observation . 

Results 

Table 2El shows the mortality in the different groups in the study. 
Unexpected death rate in the high-risk control group is 6 . 3  times that of the 
low-risk group. This difference is very unlikely to be due to chance and shows 
that the scoring system is highly effective. The rate in the observed group is 
only twice that of the low-risk group and is one-third of that in the high-risk 
controls . 

Table 2E1. Unexpected deaths between one week and 
52 weeks of life 

Unexpected deaths 

Number in group Number Rate per 1000 

Low risk 9630 1 5  1 .6 
H igh risk 1 769 14  8 .0 

Control 922 9 9 .8 
Observed 627 2 3 .2 
Refused 2 1 0  3 14 .3  

Excluded 35 

If we group those who refused surveillance with the high-risk controls to 
give us the largest unobserved group the combined death rate is 1 0 .6, which is 
3.3 times that in the observed children . I f  there were really no difference in 
the whole population we can calculate that we would get a difference as big as 
this in 7 .6 per cent of samples . (We usually take 5 per cent or less as an index 
of reasonable evidence for a difference. See Chapter 9, significance tests . )  

Discussion 

The possibility that surveillance reduces mortality requires comment .  The 
primary objective was to observe the high-risk group, but serious medical 
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conditions could not be ignored . The health visitors were able to take infants 
directly to hospital if necessary and when the five-week clinical examination 
showed that feeds were over-concentrated, parents were taught to make up 
feeds correctly. 

It is possible to discuss the reduction in death rate in the observed group on 
the grounds that it could be due to chance, but the alternative hypothesis that 
the death rate is reduced is more likely. 

The difference between observed and control groups was also less than 
might be expected because all children benefited in some way from the study. 
For example, the campaign to explain the dangers of over-strength feeding 
was not restricted to the observed group. The benefit is reflected in a reduc
tion in the death rate between ages I week and 52 weeks. For 1 968-72 the 
average death rate for the study town was 8 .2  per 1000, compared to 7.6 per 
1000 in England and Wales . In 1 973-74 it was 5 . 2  per 1000 compared to 7 .4 
for England and Wales. 

Since the end of the study all children in the study town have been scored 
and community health authorities notified of high-risk infants . A system has 
been introduced whereby all children are examined in the home by a health 
visitor at four weeks . The mortality rate for 1 975-76 was 4 .7 per thousand, 
compared to 6 . 3  per 1000 for England and Wales . 

It is concluded that infants with a high-risk of unexpected death can be 
identi fied at birth . The data suggest that deaths can be reduced by increased 
surveillance of high-risk infants . 

Questions about this report : 

1 .  Does the scoring system identify high-risk children? 

2. Allocation to high- and low-risk was not random. Does this matter? 

3. Would the scoring system work equally well everywhere? 

4. Are the group allocated to observation and the control group comparable, 
apart from treatment? 

5. Are the group actually observed and the control group comparable apart 
from treatment? 

6. What was the reason for combining the refused and control groups? Was 
this a reasonable thing to do? 

7. What comparison between groups best helps us examine the possible 
effects of observation? 

8. What conclusion can be drawn from this study? 

9. Do you think a national system of risk scoring and surveillance should be 
instituted? 



3 .  Sampling and 
observational studies 

3 . 1 .  Observational studies 

I n  this chapter we shall be concerned with observational studies. Instead of 
changing something and observing the result, as in an experiment or clinical 
trial , we observe the existing situation and try to understand what is 
happening. Studying people in the wild state, as it were, can be extremely 
difficult and it is often impossible to draw unequivocal conclusions. We 
shall start by considering how to get descriptive information about popula
tions in which we are interested. We shall go on to the problem of using 
such information to study disease processes and the possible causes of 
disease. 

3.2.  Censuses 

.One simple question we can ask about any group of interest is how many 
members it has . For example, for many purposes we need to know how many 
people live in a country and how many of them are in various age and sex 
categories . We need this information in order to monitor the changing 
pattern of disease and to plan medical services. We can obtain it by a census. 

I n  a census, the whole of a defined population is counted . In the United 
Kingdom, as in many developed countries, a population census is held every 
ten years . This is done by dividing the entire country into small areas called 
enumeration districts, usually containing between 1 00 and 1 50 households . It 
is the responsibility of an enumerator to identify every household in the 
district and ensure that a census form is completed, listing all members of the 
household and a few simple pieces of information . Even though completion 
of the census form is compelled by law, and enormous effort goes into 
ensuring that every household is included, there are undoubtedly some who 
are missed and the final data, though extremely useful ,  are not totally 
reliable. 

The census is one of the oldest forms of statistical enquiry. One is men
tioned in the Old Testament (1 Chronicles : 2 1 ) ,  where we read that Satan 
incited King David to count the people. This so angered the Lord and He sent 
a pestilence throughout Israel as a punishment and warning to presumptuous 
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statisticians . Censuses remain unpopular to  this day, principally because of  
fears that census data may be  used for other purposes . For this reason, great 
efforts are made to ensure the confidentiality of census data. 

The medical profession take part in a massive, continuing census of deaths, 
by registering for each death which occurs not only the name of the deceased 
and cause of death, but also details of age, sex, place of residence and occupa
tion . We shall have more to say about this in Chapter 1 6 .  

Census methods are not restricted to  national populations. They can be 
used for more specific administrative purposes too. For example, we might 
want to know how many patients are in a particular hospital at a particular 
time, how many of them are in different diagnostic groups, in different 
age/sex groups, and so on. We can then use this information together with 
estimates of the death and discharge rates to estimate how many beds 
these patients will occupy at various times in the future (Bewley et al. 1 975 ,  

1 980). 

3.3. Sampling 

A census of a single hospital can only give us reliable information about that 
hospital . We cannot easily generalize our results to hospitals in general . If we 
want to obtain information about the hospitals of the United Kingdom, two 
courses are open to us: we can study every single one, or we can take a repre
sentative sample of hospitals and use that to draw conclusions about 
hospitals as a whole. 

Most statistical work is concerned with using samples to draw conclusions 
about some larger population. In the clinical trials described in Chapter 2, the 
patients act as a sample from a larger population consisting of all similar 
patients and we do the trial to find out what would happen to this larger 
group were we to give them a new treatment. 

The word 'population' is used in common speech to mean 'all the people 
living in an area' , frequently of a country. In statistics, we define the term 
more widely .  A population is any collection of individuals in which we may 
be interested, where these individuals may be anything, and the number of 
individuals may be finite or infinite. Thus, if we are interested in some 
characteristics of the British people, the population is 'all people in Britain ' . 
If we are interested in the treatment of diabetes the population is 'all 
diabetics ' .  If we are interested in the blood pressure of a particular patient, 
the population is 'all possible measurements of blood pressure in that 
patient ' .  If we are interested in the toss of two coins, the population is 'al l  
possible tosses of two coins ' .  The first two examples are finite populations 
and could in theory if not practice be completely examined; the second two 
are infinite populations and could not . We could only ever look at a sample, 

which we will define as being a group of individuals taken from a larger 
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population and used to find out something about that population .  
How should we choose a sample from a population? The problem of 

getting a representative sample is similar to that of getting comparable groups 
of patients discussed in Sections 2 . 1 ,  2.2, and 2 . 3 .  We want our sample to be 
representative, in some sense, of the population. We want it to have all the 
characteristics in terms of the proportions of individuals with particular 
qualities as has the whole population . In a sample from a human population, 
for example, we want the sample to have about the same proportion of men 
and women as in the population, the same proportions in different age 
groups , in occupational groups, with different diseases, and so on . I n  
addition, i f  we  use a sample to  estimate the proportion of people with a 
disease, we want to know how reliable this estimate is, how far from the pro
portion in the whole population the estimate is likely to be. 

I t  is not sufficient to choose the most convenient group. For example, i f  we 
wished to predict the results of an election, we would not take as our sample 
people waiting in bus queues. These may be easy to interview, at least until the 
bus comes, but the sample would be heavily biased towards those who cannot 
afford cars and thus towards lower-income groups. In the same way, if we 
wanted a sample of medical students we would not take the front two rows of  
the lecture theatre. They may be unrepresentative in having an unusually high 
thirst for knowledge, or poor eyesight . 

How can we choose a sample which does not have a built-in bias? We might 
divide our population into groups, depending on how we think various 
characteristics will affect the result. To ask about an election, for example, 
we might group the population according to age, sex and social class . We then 
choose a number of people in each group by knocking on doors until the 
quota is made up, and interview them . Then, knowing the distributions of 
these categories in the population (from census data, etc . )  we can get a far 
better picture of the views of the population . This is called quota sampling. I n  
the same way we  could try to  choose a sample of rats by  choosing given 
numbers of each weight, age, sex, etc . 

There are three main difficulties in this approach: 

I .  It is rarely possible to think of all the relevant classifications . 

2. It is still difficult to avoid bias within the classifications, by picking inter
viewees who look friendly, or rats which are easy to catch . 

3 .  We can only get an idea of the reliability of findings by rept:atedly doing 
the same type of survey, and of the representativeness of the sample by 
knowing the true population values (which we can actually do in the case 
of elections) , or by comparing the results with a sample which does not 
have these drawbacks . 

This method can be quite effective when similar surveys are made 
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repeatedly as in opinion polls or market research . It is less useful for medical 
problems, where we are continually asking new questions . We need a method 
where bias is avoided and where we can estimate the representativeness of the 
sample from the sample itself. As in Section 2 .2 ,  we use a random method: 
random sampling. 

3.4. Random sampling 

The problem of obtaining a sample which is representative of a larger 
population is very similar to that of allocating patients into two comparable 
groups . We want a way of choosing members of the sample which does not 
depend on their own characteristics. The only way to be sure of this is to select 
them at random, so that whether or not each member of the population is 
chosen for the sample is purely a matter of chance. 

For example, to take a random sample of five students from a class of 
eighty, we could write all the names on pieces of paper, mix them thoroughly 
in a hat or other suitable container, and draw out five. All students have the 
same probability, 5/80, of being chosen, and so we have a random sample. 
All samples of five students are equally likely, too, because each is chosen 
quite independently of the others . This method is called simple random 

sampling. 
As we have seen in Section 2.2 ,  physical methods of randomizing are often 

not very suitable for statistical work. We usually use tables of random digits, 
such as Table 2 . 3 ,  or random numbers generated by a computer program. We 
could use Table 2 . 3  to draw our sample of five from 80 students in several 
ways . For example, we could list the students, numbered from 1 to 80. This 
list from which the sample is to be drawn is called the sampling frame. We 
choose a starting point in the random-number table (Table 2 . 3) ,  say row 20, 
column 5 .  This gives us the following pairs of digits : 

1 4  04 88 86 28 92 04 03 42 99 87 08 

We could use pairs of digits directly as subject numbers. We choose 
subjects numbered 14 and 4. There is no subject 88 or 86, so the next chosen is 
number 28. There is no 92, so the next is 4. We already have this subject in the 
sample, so we carry on to the next pair of digits, 03 . The final member of the 
sample is number 42. Our sample of five students is thus numbers 3, 4, 1 4, 28 
and 42. The choice of adjacent numbers 3 and 4, is something that often 
occurs in random number systems. They often appear to us to have pattern, 
perhaps because the human mind is always looking for it. On the other hand, 
if we try to make the sample 'more random' by replacing either 3 or 4 by a 
subject near the end of the list , we are imposing a pattern of uniformity on the 
sample and in fact destroying its randomness . 

This method of using the table is fine for drawing a small sample, though it 
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can be tedious for drawing large samples, because of the need to check for 
duplicates . There are many other ways of doing it. For example, we can drop 
the requirement for a sample of fixed size, and only require that each member 
of the population will have a fixed probability of being in the sample. We 
could draw a 5/80 = 1 1 1 6  sample of our class by using the digits in  groups to 
give a decimal number, say 

0 . 1 404 0 . 8886 . 0.2892 0.0403 0.4299 0. 8708 

We then choose the first member of the population if 0. 1 404 is less than 
1 1 1 6 . I t  is not, so we do not include this member, nor the second , correspond
ing to 0. 8886, nor the third , corresponding to 0.2892. The fourth corresponds 
to 0.0403 , which is less than 1 1 1 6  (0.0625) and so the fourth member is chosen 
as a member of the sample, and so on . This method is only suitable for fairly 
large samples, as the size of the sample obtained can be very variable in small 
sampling problems. In the example there is a better than 1 in 10 chance of 
finishing with a sample of 2 or fewer . (This is an example of the Binomial 
Distribution described in Chapter 6 . )  

Random sampling ensures that the only ways in which the sample differs 
from the population will be those due to chance. It has a further advantage; 
because the sample is random, we can apply the methods of probability 
theory to the data obtained . As we shall see in Chapters 8 and 9, this enables 
us to estimate the likely size of the errors we may get, for example, by 
standard errors or confidence intervals, and present them with our 
results. 

The problem with random sampling is that we must have a list of the 
population from which the sample is to be drawn. Lists of populations may 
be hard to find, or they may be very cumbersome. For example, to sample the 
adult population in the UK, we could use the electoral roll .  But a list of some 
40 000 000 names would be difficult to handle, and in practice we would first 
take a random sample of electoral wards, and then a random sample of  
electors within these wards . This i s ,  for obvious reasons, a multi-stage 

random sample. This approach contains the element of randomness, and so 
samples will be representative of the populations from which they are drawn. 
However, not al l  samples have an equal chance of being chosen, so i t  is not 
the same as simple random sampling. 

We can also carry out sampling without a list of the population itself, 
provided we have a list of some larger units which contain all the members of 
the population . For example, we can obtain a random sample of school
children in an area by starting with a list of schools ,  which is quite easy to 
come by. We then draw a simple random sample of schools and all the 
children within our chosen schools form the sample of children. This is called 
a cluster sample, because we take a sample of clusters of individuals . 

Sometimes it is desirable to divide the population into different strata, for 
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example into age and sex groups, and take random samples within these. This 
is rather like quota sampling, except that within the strata we choose at 
random. If the different strata have different values of the quantity we are 
measuring, this stratified random sampling can increase our precision 
considerably. There are many complicated sampling schemes for use in 
different situations . 

In  Section 2 . 3  we looked at the difficulties which can arise using methods 
of allocation which appear random but do not use random numbers . In 
sampling, two such methods are often suggested by researchers . One is to 
take every tenth subject from the list, or whatever fraction is required. The 
other is to use the last digit of some reference number, such as the hospital 
number, and take subjects where this is, say, 3 or 4 as the sample. These 
sampling methods are systematic or quasi-random. It is not usually obvious 
why they should not give ' random' samples, and it may be that in many cases 
they would be just as good as random sampling. They are certainly easier . To 
use them, we must be very sure that there is no pattern to the list which could 
produce an unrepresentative group. If it is possible, random sampling seems 
safer. 

Volunteer bias can be as serious a problem in sampling studies as it is in 
trials (Section 2 .4) .  Having drawn the sample, if we can only obtain data 
from a subset of them this subset will not be a random sample of the popula
tion. Its members will be self-selected. It is often very difficult to get data 
from every member of a sample. The proportion for whom data is obtained is 
called the response rate and in a sample survey of the general population is 
likely to be between 70 and 80 per cent. The possibility that those lost from 
the sample are different in some way must be taken into account . For 
example, they may tend to be il l ,  which can be a serious problem in disease 
prevalence studies . In a study of cigarette smoking and respiratory disease in 
Derbyshire schoolchildren, we drew a random sample of schools, and our 
sample of children was all children in the first secondary school year (Banks 
et al. 1 978). We thus had a random cluster sample . The response rate to our 
survey was 80 per cent, most of those lost being absent from school on the 
day. Now, some of these absentees were ill and some were truants .  Our 
sample may thus lead us to underestimate the prevalence of respiratory 
symptoms, by omitting sufferers with current acute disease , and the 
prevalence of cigarette smoking by omitting those who have gone for a quick 
smoke behind the bike sheds. 

One of the most famous sampling disasters, the Literary Digest poll of 
1 936, illustrates these dangers (Bryson 1 976). This was a poll of  voting 
intentions in the 1 936 US presidential election, fought by Roosevelt and 
Landon . The sample was a complex one. In some cities every registered voter 
was included , in others one in two, and for the whole of Chicago one in three. 
Ten million sample ballots were mailed to prospective voters, but only 
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2 .3  million, less than a quarter, were returned. Still, two million is a lot of  
Americans, and these predicted a 60 per cent vote to  Landon. In fact , 
Roosevelt won with 62 per cent of the vote. The response was so poor that the 
sample was most unlikely to be representative of the population, no matter 
how carefully the original sample was drawn. Two million Americans can be 
wrong! It is not the mere size of the sample, but its representativeness which is 
important . Provided the sample is truly representative, 2000 voters is all you 
need to estimate voting intentions to within two per cent, which is enough for 
election prediction if they tell the truth and don' t  change their minds. 
Chapter 8 describes the basis for this calculation . 

3.5 .  Sampling in clinical studies 

Having extolled the virtues of random sampling and cast doubt on all other 
sampling methods, we must admit that most medical data are not obtained in 
this way. This is partly because the practical difficulties are immense. To 
obtain a reasonable sample of the population of the UK, anyone can get a list 
of electoral wards, take a random sample of them, buy copies of the electoral 
rolls for the chosen wards and then take a random sample of names from it .  
You then knock on the door at your own risk. But suppose you want to obtain 
a sample of patients with cirrhosis of the liver, to see how many are medically 
qualified. You could get a list of hospitals easily enough and get a random 
sample of them, but then things would become difficult .  The names of 
patients will only be released by the consultant in charge should he so wish, 
and you will need his permission before approaching them . Any study of 
human patients requires ethical approval, and you will need this from the 
ethical committee of each of your chosen hospitals . Getting the cooperation 
of so many people is a task to daunt the hardiest, and I know of no-one who 
has tried it on a national scale. 

The result of this is that clinical studies are done on the patients to hand . 
We have touched on this problem in the context of clinical trials (Section 2 .6) 
and the same applies to other types of clinical study. In a clinical trial we are 
concerned with the comparison of two treatments and we hope that the 
superior treatment in Stockport will also be the superior treatment in 
Southampton. If we are studying clinical measurement , we can hope that 
a measurement method which is repeatable in Middlesbrough will be 
repeatable in Maidenhead , and that two different methods giving similar 
results in one place will give similar results in another . Studies which are not 
comparative give more cause for concern. The natural history of a disease 
described in one place may di ffer in unpredictable ways from that in another, 
due to differences in the environment and the genetic make-up of the local 
population. Normal ranges for quantities of clinical interest, the l imits within 
which values from most healthy people will lie, may well differ from place to 
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place , yet they are often determined on  groups of  subjects which are quite 
unrepresentative even of the local population. I know of one researcher who 
determined the normal range of her measurement from hospital and medical 
school personnel , a very common practice, and then took a second sample 
from the staff of a nearby office block . The second normal range was 
different from the first ! 

The same problem arises in attempts at computer diagnosis and at the 
identification of high-risk groups. They are usually based on local patient 
records, and so may omit factors which are important in other places . 
The prediction of high risk of unexpected death in infants described in 
Exercise 2E worked well in the northern town where the original data were 
obtained. It did not work nearly so well in an inner London district, 
where there is much greater variability in genetic stock and social circum
stances and other factors were also important . The study did provide 
good evidence that the method worked . It was the data which were not 
applicable .  

This does not mean that studies based on local groups of patients are 
without value. This is particularly so when we are concerned with 
comparisons between groups , as in a clinical trial , or relationships between 
different variables. However, we must always bear the limitations of the 
sampling method in mind when interpreting the results of such studies . 

In general , most medical research has to be carried out using samples 
drawn from populations which are much more restricted than those about 
which we wish to draw conclusions. We may have to use patients in one 
hospital instead of all patients, or the population of a small area rather than 
that of the whole country or planet . We may have to rely on volunteers for 
studies of normal subjects, given most people's dislike of having needles 
pushed into them and disinclination to spend hours hooked up to batteries of 
instruments .  Groups of 'normal ' subjects contain medical students, nurses 
and laboratory technicians far more often than would be expected by chance . 
In animal research the problem is even worse, for not only does one batch of 
one strain of mice have to represent the whole species , it often has to repre
sent members of a different order , namely humans . 

Findings from such studies can only apply to the population from which 
the sample was drawn. Any conclusion which we come to about wider 
populations , such as all patients with the disease in question, depends on 
evidence which is not statistical and often unspecified, namely our general 
experience of natural variability and experience of similar studies . This may 
let us down, and results established in one population may not apply to 
another . We have seen this in the use of BCG vaccine in India (Section 2.6) .  It 
is very important wherever possible that studies should be repeated by other 
workers on other populations, so that we can sample the larger population at 
least to some extent . 
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3 .6. Sampling in epidemiological studies 

One of the most important and difficult tasks in medicine is to determine the 
causes of disease, so that we may devise methods of prevention .  We are 
working in an area where experiments are often neither possible nor ethical .  
For example, to determine that cigarette smoking caused cancer, we could 
imagine a study in which children were randomly allocated to a ' twenty 
cigarettes a day for fifty years' group and a 'never smoke in your l ife' group. 
All we would have to do then would be to wait for the death certificates. Now, 
firstly, we could not persuade our subjects to stick to the treatment and, 
secondly, deliberately setting out to cause cancer is not ethical . We must 
therefore observe the disease process as best we can, by watching people in 
the wild state rather than under laboratory conditions . When we do this we 
must face the fact that the disease effect and putative cause do not exist in 
isolation but in a complex interplay of many intervening factors. We must do 
our best to assure ourselves that the relationship we observe is not the result 
of some other factor acting on both 'cause' and 'effect' .  For example, it was 
once thought that the African fever tree, the yellow-barked acacia, caused 
malaria, because those unwise enough to camp under it were likely to develop 
the disease. Now, this tree grows by water where mosquitos breed, and 
provides an ideal daytime resting place for these insects, whose bite transmits 
the P/asmodium parasite which produces the disease. It was the water and the 
mosquitos which were the important factors, not the tree. Indeed, the name 
'malaria' comes from a similar incomplete observation. It means 'bad air' 
and comes from the belief that the disease was caused by the air in marshy 
places, where the mosquitos bred. Epidemiological study designs must try to 
deal with the complex inter-relationships between different factors in order 
to deduce the true mechanism of disease causation. We also use a number of 
different approaches to the study of these problems, to see whether all 
produce the same answer. 

One method is to use differences in mortality rates between countries or 
changes over time. Here the data are whole-population census data, so there 
is no sampling problem. The problem is rather to do with variations in 
diagnostic fashion and with the intervention of other variables. For example, 
i t  has been observed that countries with a high consumption of animal fat 
tend to have high mortality from coronary artery disease. However, such 
countries tend to have low consumption of dietary fibre also, so we must try 
to disentangle the effects of one from those of the other . 

Another approach is the cross-sectional study. We take some sample or 
whole population and observe whether or not they have either disease or 
possible cause . For example, we wanted to know whether smoking causes 
respiratory symptoms in schoolchildren. We gave questionnaires to all first
year secondary schoolboys in a sample of schools in Derbyshire, as described 
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in Section 3 . 3 .  Among boys who had never smoked , 3 per cent reported a 
cough first thing in the morning, compared to 1 9  per cent of boys who said 
they smoked one or more cigarettes per week. Here we do have a sampling 
problem. The sample is representative of boys of this age in Derbyshire who 
answer questionnaires, but we want our conclusions to apply at least to the 
United Kingdom, if not the developed world or the whole planet. We also 
have the problem that smoking and respiratory symptoms may not be directly 
related, but may both be related to some other factor. For example, children 
whose parents smoke may be more likely to develop respiratory symptoms , 
because of passive inhalation of their parents' smoke, and also be more 
influenced to try smoking themselves. We can test this by looking at the 
relationship between the child 's smoking and symptoms for those whose 
parents are not smokers , and for those whose parents are smokers , 
separately. As Fig . 3 . 1  shows , this relationship in fact persisted (Bland et al. , 

1 978) and there was no reason to suppose that a third causal factor was at 
work. The third problem is that the respondents may not be telling the truth , 
and we shall tackle this in Section 3 .9 .  

Most diseases are not suited to this simple cross-sectional approach, 
because they are rare events . For example, lung cancer accounts for 9 per cent 
of male deaths in the UK (OPCS, DH2 No. 7), and so is a very important 
disease. However , the proportion of people who are known to have the 
disease at any given time, the prevalence, is quite low . Most deaths from lung 
cancer take place after the age of 45 , so we shall consider a sample of men 
aged 45 and over. The average remaining lifespan of these men, in which they 
could contract lung cancer, will be about 30 years. The average time from 
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Fig. 3.1  Prevalence of self-reported morning cough in Derbyshire schoolboys, by 
their own and their parents' cigarette smoking (Bland et al. 1978). 
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diagnosis to death is about half a year, so of those who will contract lung 
cancer only 1 /30 x 1 12 will have been diagnosed when the sample is drawn. 
Only 9 per cent of the sample will develop lung cancer anyway, so the propor
tion with the disease at any time is 1 /30 x 1 12 x 9 per cent = 0.2 per cent or 
2 per thousand .  We would need a very large sample indeed to get a worth
while number of lung cancer cases. 

3. 7. Case-control studies 

One way of getting round the problem of the small proportion of people with 
the disease of interest is the case-control study. In this we take a group of 
people with the disease, the cases, and a second group without the disease , the 
controls. We then find the exposure of each subject to the possible causative 
factor and see whether this differs between the two groups . A noted case
control study was that of Doll and Hill ( 1 950) on the aetiology of lung cancer . 
Twenty London hospitals notified all patients admitted with carcinoma of 
the lung. Notification was by various means: the admitting clerk,  the house 
physician, the cancer registrar or the radiotherapy department, depending on 
the hospital . Those notified became the cases. On notification, an interviewer 
visited the hospital to interview the case. At the same time the interviewer 
selected a patient with diagnosis other than cancer, of the same sex and within 
the same five-year age group as the case, in the same hospital at the same 
time. When more than one suitable patient was available, the patient chosen 
was the first in the ward list considered by the ward sister to be fit for inter
view. Table 3 . 1  shows the relationship between smoking and lung cancer for 
these patients .  A smoker was anyone who had smoked as much as one 
cigarette a day for as much as one year. Doll and Hill concluded that smoking 
is an important factor in the production of carcinoma of the lung. People 
have been arguing about it ever since . 

The case-control study is an attractive method of investigation, because of 
its relative speed and cheapness compared to other approaches. However, 

Table 3 .1 .  Numbers of smokers and non-smokers 
among lung cancer patients and age- and sex-matched 
controls with diseases other than cancer (Dol l  and Hill 
1 950) 

Males 
Lung cancer patients 
Controls 

Females 
Lung cancer patients 
Controls 

Non-smokers Smokers Total 

2 (0.3"7o)  647 649 
27 (4.2"7o) 622 649 

1 9  (3 1 .7"7o) 41  60 
32 (53 . 3"7o)  28 60 
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there are many problems which arise in the selection of cases, the selection of  
controls, and obtaining the data . Because of  these, case-control studies some
times produce contradictory and conflicting results. 

The first problem is the selection of cases. This usually receives little 
consideration beyond a definition of the type of disease and a statement 
about the confirmation of the diagnosis. This is understandable, as there 
is usually little else that the investigator can do about it. He starts with the 
available set of patients. However, we must remember that these patients 
do not exist in isolation .  They are the result of some process which has 
led to them being diagnosed as having the disease and thus being available for 
study. 

For example, suppose we suspect that oral contraceptives might cause 
cancer of the breast . We have a group of patients diagnosed as having cancer 
of the breast .  We must ask ourselves whether any of these were detected at a 
medical examination which took place because the woman was seeing a 
doctor to receive a prescription . If this were so, the pill would be associated 
with the detection of the disease rather than its cause. 

Far more difficulty is caused by the selection of controls. We want a group 
of people who do not have the disease in question, but who are otherwise 
comparable to our cases . We must first decide the population from which 
they are to be drawn. There are two sources of controls : the general 
population and patients with other diseases . The latter is usually preferred 
because of its accessibility. Now these two populations are clearly not the 
same. For example, Doll and Hill gave the current smoking habits of 1 0 1 4  
men and women with diseases other than cancer, 1 4  per cent of whom were 
currently non-smokers. They commented that there was no difference 
between smoking in the disease groups - respiratory disease, cardiovascular 
disease, gastro-intestinal disease, and others. However, in the general 
population the percentage of current non-smokers was 1 8  per cent for men 
and 59 per cent for women (Todd 1 972) . The smoking rate in the patient 
group as a whole was high . Since their report, of course, smoking has been 
associated with diseases in each group. Smokers get more disease and are 
more l ikely to be in hospital than non-smokers. 

Intuitively, the comparison we want to make is between people with the 
disease and healthy people, not people with a lot of other diseases . We want 
to find out how to prevent disease, not how to choose one disease or another ! 
However, it is much easier to use hospital patients as controls . There may 
then be a bias because the factor of interest may be associated with other 
diseases . Suppose we want to investigate the relationship between a disease 
and cigarette smoking using hospital controls. Should we exclude patients 
with lung cancer from the control group? If we include them, our controls 
may have more smokers than the general population, but if  we exclude them 
we may have less .  This problem is usually resolved by choosing specific 
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patient groups , such as fracture cases, whose illness is thought to be unrelated 
to the factor being investigated . 

Having defined the population we must choose the sample. There are many 
factors which affect disease incidence, such as age and sex, for which we wish 
to adjust. The most straightforward way is to take a large random sample of 
the control population, ascertain all the relevant characteristics, 

'and then 
adjust for differences during the analysis, as described in the Derbyshire 
smoking study. 

The alternative is to try to match a control to each case , so that for each 
case there is a control of the same age, sex, etc . Having done this, then we can 
compare our cases and controls knowing that the effects of these intervening 
variables are automatically adjusted for. l fwe wish to exclude a case we must 
exclude its control, too, or the groups will no longer be comparable. 

Matching on some variables does not ensure comparability on all .  Indeed, 
if it did there would be no study. Doll and Hill matched on age, sex, and 
hospital . They recorded area of residence and found that 25 per cent of their 
cases were from outside London, compared to 14 per cent of controls . If we 
want to see whether this influences the smoking and lung cancer relationship 
we must use adjustment anyway. Doll ' s  and Hill 's solution was to restrict 
attention to 98 pairs from district hospitals in London .  

What should we  match for? The more we match for, the fewer intervening 
variables there are to worry about . On the other hand, it becomes more and 
more difficult to find matches. Even matching on age and sex , Doll and Hill 
could not always find a control in the same hospital, and had to look else
where . Matching for more than age and sex can be very difficult .  

Having decided on the matching variables we then find in the control 
population all the possible matches. If there are more matches than we need, 
we should choose the number required at random. Other methods, such as 
that used by Doll and Hill who allowed the ward sister to choose, have 
obvious problems of potential bias. If no suitable control can be found, we 
can do two things . We can widen the matching criteria, say age to within ten 
years rather than five, or we can exclude the case. 

There is a problem of assessment bias in such studies , just as in clinical 
trials (Section 2 .8) .  I nterviewers will very often know whether the interviewee 
is a case or control and this may well affect the way questions are asked . The 
same problem arises in the recall of past events by the case. For example, the 
mother of a handicapped child may be more l ikely than the mother of a 
normal child to remember events in pregnancy which may have caused 
damage. These and other considerations make case-control studies extremely 
difficult to carry out and to interpret. The evidence from such studies can be 
useful ,  but data from other types of investigation must be considered, too, 
before any firm conclusions are drawn. 
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3.8. Cohort studies 

There are many problems in interpreting the results of case-control studies . 
One is that the case-control design is usually retrospective, that is ,  we are 
starting with the present disease state, e .g .  lung cancer, and relating it to the 
past, e .g .  history of smoking . It would clearly be preferable to start with the 
possible cause, e .g .  smoking, and see whether this leads to the disease in 
the future. This is a prospective design . We take a group of people and 
observe whether they have the suspected causal factor. We then follow them 
over time and observe whether they develop the disease. Such a sample 
identified at one point in time, is called a cohort. Compared to a case-control 
study, a cohort study is clearly more difficult to do. It takes longer as we must 
wait for the future event to occur, it involves keeping track of large numbers 
of people over maybe several years, and often very large numbers must be 
included in the sample to ensure that sufficient numbers will develop the 
disease between those with and without the suspected causal factor to enable 
comparisons to be made . 

After their case-control study on smoking and cancer, Doll and Hill ( 1 956) 
carried out a cohort study. They sent a questionnaire to all members of the 
medical profession in the UK. Respondents were asked to give their name, 
address, age, and details of current and past smoking habits . The deaths 
among this group were recorded. Only 60 per cent of doctors cooperated, so 
in fact ,  the cohort does not represent all doctors. The results for the first 53  
months are shown in  Table 3 .2 .  

We have a sampling problem here, as our cohort represents doctors willing 
to return questionnaires, not people as a whole. We cannot use the death rates 
as estimates for the whole population, or even for all doctors . What we can 
say is that, in this group, smokers were far more l ikely than non-smokers to 

Table 3.2.  Standardized death rates per year per 1 000 men aged 35 or more, in 
relation to most recent amount smoked, 53 months follow-up (Doll and Hill 1 956) 

Death rate among men 
smoking a daily average 
weight of tobacco of 

No. of Non-
Cause of death deaths Smokers Smokers 1 - 1 4  g 1 5-24 g 25 g +  

Lung cancer 84" 0.07 0.90 0.47 0.86 1 .66 
Other cancer 220 2 .04 2.02 2 .01  1 .56 2.63 
Other respiratory diseases 1 26 0 .8 1  1 . 1 3 I .DO I .  I I  1 .4 1  
Coronary thrombosis 508 4.22 4.87 4.64 4.60 5 .99 
Other causes 779 6. 1 1  6.89 6 .82 6.38 7 . 1 9  

All causes 1 7 1 4  1 3 .25 1 5 .78 1 4.92 1 4 .49 1 8 .84 

a Three deaths in  which lung cancer was recorded as a contributory but not direct cause of death are 

recorded twice. 
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die from lung cancer. Now, it would be surprising if this relationship were 
only true for doctors , but we cannot definitely say that this would be the 
case for the whole population, because of the way the sample has been 
chosen . 

We also have the problem of other intervening variables . We have not allo
cated doctors to be smokers or non-smokers; they have chosen themselves . 
The decision to begin smoking may be related to many things (social factors , 
personality factors, genetic factors) which may also be related to lung cancer. 
The great statistician, Fisher himself argued strongly against the causal inter
pretation. We must consider these alternative explanations very carefully 
before coming to any conclusion about the causes of cancer. In this study 
there were no data to test such hypotheses , a common problem in cohort 
studies . Because the sample is so large, only a little information is collected on 
each member of it . 

There are many problems in using these observational designs, and the 
medical consumer of such research must be aware of them. We have no better 
way to tackle these questions and so we must make the best of them and look 
for consistent relationships which stand up to the most severe examination. 
We can also look for confirmation of our findings indirectly, from animal 
models and from dose-response relationships in the human population. 
However, we must accept that perfect proof is impossible in these issues and 
it is unreasonable to demand it .  Sometimes, as with smoking and health ,  we 
must act on the balance of the evidence. 

3.9. Questionnaire bias in observational studies 

We have already looked at response bias in clinical trials (Section 2. 7) and the 
same problems arise in observational studies. This is often further com
plicated because so many data have to be supplied by the subjects themselves . 

The way in which a question is asked may influence the reply. Sometimes 
the bias in a question is obvious. Compare these: 

(a) Do you think people should be free to provide the best medical care 
possible for themselves and their families, free of interference from a 
State bureaucracy? 

(b) Should the wealthy be able to buy a place at the head of the queue for 
medical care , pushing aside those with greater need, or should medical 
care be shared solely on the basis of need for it? 

Version (a) expects the answer yes, version (b) expects the answer no. We 
would hope not to be mislead by such blatant manipulation, but the effects of 
question wording can be much more subtle than this . Hedges (I 978) reports 
several examples of the effects of varying the wording of questions . He asked 
two groups of about 800 subjects one of the following: 
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(a) Do you feel you take enough care of your health ,  or not? 
(b) Do you feel you take enough care of your health, or do you think you 

could take more care of your health? 

In reply to question (a) , 82 per cent said that they took enough care , whereas 
only 68 per cent said this in reply to question (b). Even more dramatic was the 
difference between this pair :  

(a) Do you think a person of your age can do anything to  prevent ill-health in  
the future or not? 

(b) Do you think a person of your age can do anything to prevent ill-health in 
the future, or is it largely a matter of chance? 

Not only was there a difference in the percentage who replied that they could 
do something, but as Table 3 . 3  shows this answer was related to age for 
version (a) but not for version (b) . Here version (b) is ambiguous, as it is quite 
possible to think that health is largely a matter of chance but that there is still 
something one can do about it. Only if  it is totally a matter of chance is there 
nothing one can do. 

Table 3.3 .  Replies to two similar questions about ill
health, by age (Hedges 1 9 78) 

Age (years) 

1 6-34 

Can do something (a) 75% 
Can do something (b) 45% 

35-54 

64% 
49% 

55 + Total 

56% 65% 
50% 49% 

Sometimes the respondents may interpret the question in a different way 
from the questioner . For example, when asked whether they usually coughed 
first thing in the morning, 3 .  7 per cent of the Derbyshire schoolchildren 
replied that they did. When their parents were asked about the child ' s  
symptoms 2 .4 per cent replied positively, not a dramatic difference. Yet when 
asked about cough at other times in the day or at night 24. 8  per cent of 
children said yes , compared to only 4 .5  per cent of their parents (Bland et al. 

1 979) . These symptoms all showed relationships to the child ' s  smoking and 
other potentially causal variables, and also to one another . We are forced to 
admit that we are measuring something, but that we are not sure what ! 

Another possibility is that respondents may not understand the question at 
all, especially when it includes medical terms. In an earlier study of cigarette 
smoking by children, we found that 85 per cent of a sample agreed that 
smoking caused cancer , but that 41 per cent agreed that smoking was not 
harmful (Bewley et al. 1 974) . There are at least two possible explanations for 
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this apparent contradiction: the negative statement 'smoking is not harmful '  
may have confused the children; or  they may not see cancer as  harmful . We 
have evidence for both of these possibilities. In a repeat study in Kent we 
asked a further sample of children whether they agreed that smoking caused 
cancer and that ' smoking is bad for your health' (Bewley and Bland 1 977) . In 
this study 90 per cent agreed that smoking causes cancer and 91 per cent 
agreed that smoking is bad for your health. 

In another study (Bland et al. 1 975), we asked children what was meant by 
the term ' lung cancer' . Only 1 3  per cent seemed to  us to  understand and 32 
per cent clearly did not, often saying ' I  don' t  know' . They nearly a l l  knew 
that lung cancer was caused by smoking, however. 

Often the easiest and best method, if not the only method, of obtaining 
data about people is to ask them. When we do it , we must be very careful to 
ensure that questions are straightforward, unambiguous, and in language the 
respondents will understand . If this is not done then disaster is l ikely to 
follow. 

Exercise 3M 

(Each branch is either true or false . )  

1 .  In statistical terms, a population: 

(a) consists only of people; 

(b) may be finite; 

(c) may be infinite; 

(d) can be any set of things in which we are interested ; 

(e) may consist of things which do not actually exist. 

2. A one-day census of in-patients in a psychiatric hospital could : 

(a) give good information about the patients in that hospital ; 
(b) give reliable estimates of seasonal factors in admissions; 

(c) enable us to draw conclusions about the psychiatric hospitals of Britain ;  

(d) enable us to estimate the distribution of different diagnoses in mental 
i llness in the local area; 

(e) tell us how many patients there were in the hospital . 

3.  In simple random sampling: 
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(a) each member of  the population has an equal chance of being chosen; 

(b) adjacent members of the population must not be chosen; 
(c) likely errors cannot be estimated; 

(d) each possible sample of given size has an equal chance of being 
chosen; 

(e) the decision to include a subject in the sample depends only on its own 
characteristics. 

4. Advantages of random sampling include: 

(a) it can be applied to any population; 

(b) likely errors can be estimated; 

(c) it is not biased; 

(d) it is easy to do; 

(e) the sample can be referred to a known population . 

S. In a study of hospital patients, 20 hospitals were chosen at random from 

a list of all hospitals. Within each hospital, 10 per cent of patients were 

chosen at random: 

(a) The sample of patients is a random sample. 

(b) All hospitals had an equal chance of being chosen . 

(c) All patients had an equal chance of being chosen . 

(d) The sample could be used to make inferences about all hospital patients 
at that time. 

(e) All possible samples of patients had an equal chance of being chosen. 

6. To examine the relationship between alcohol consumption and cancer of 

the oesophagus, feasible studies include: 

(a) questionnaire survey of a random sample from the electoral role; 
(b) comparison of history of alcohol consumption between a group of 

oesophageal cancer patients and a group of healthy controls matched for 
age and sex; 

(c) comparison of current oesophageal cancer rates in a group of alcoholics 
and a group of teetotallers; 

(d) comparison by questionnaire of history of alcohol consumption between 
a group of oesophageal cancer patients and a random sample from the 
electoral role in the surrounding district; 

(e) comparison of death rates due to cancer of the oesophagus in a large 
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sample of subjects whose alcohol consumption has been determined in  
the past .  

Exercise 3E 

Between 1 977 and 1 979, a series of studies were reported concerning a 
possible relationship between eating cornflakes and Crohn's disease. The 
first paper reported a strong association between the two, which subsequent 
authors failed to demonstrate. In this exercise we shall analyse two of these 
studies to see whether these contradictions can be resolved and, if we can, 
suggest possible explanations for the initial finding. 

Crohn's  disease is an inflammatory disease, usually of the last part of the 
small intestine. It can cause a variety of symptoms, including vague pain, 
diarrhoea, acute pain , and obstruction. Treatment may be by drugs or 
surgery, but many patients have had the disease for many years . 

The suggestion that cornflakes may cause Crohn's disease arose in the 
study of James ( 1 977). His initial hypothesis was that foods taken at 
breakfast may be associated with Crohn's disease. James studied 16 men and 
1 8  women with Crohn's disease, aged 19-64 years, mean time since diagnosis 
4.2 years .  These were compared to controls ,  drawn from hospital patients 
without major gastro-intestinal symptoms. Two controls were chosen per 
patient, matched for age and sex. James interviewed all cases and controls 
himself. Cases were asked whether they ate various foods for breakfast 
before the onset of symptoms, and controls were asked whether they ate 

Table 3E.1 .  Numbers of Crohn's Disease patients and controls who 
ate various cereals regularly and otherwise (James 1977) 

Patients Controls Significance test 

Corn flake
·
s Regularly 23 1 7  p < 0.000 1  

Rarely o r  never I I  5 1  

Wheat Regularly 1 6  1 2  p < 0.01  
Rarely or never 1 8  56 

Porridge Regularly I I  1 5  0.5 > p > 0. 1 
Rarely or never 23 53 

Rice Regularly 8 1 0  0 . 5  > p > 0. 1 
Rarely or never 26 56 

Bran Regularly 6 2 p = 0.02 
Rarely or never 28 66 

Muesli Regularly 4 3 p = 0. 1 7  
Rarely o r  never 30 65 
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various foods before a corresponding t ime. Table 3 E .  l shows t h e  n umber o f  
patients who reported eat ing various cereals regu larly ( i . e .  a t  least once a 
week)  or o therwise . The p values wi l l  be explained in deta i l  in Chapters 9 and 
1 3 .  For the momen t ,  we only need to  know that th is  is an index of the  s trength 
of evidence. The smal ler p i s ,  t he more sure we can be t hat the two variables, 
such as eat ing cornflakes and having Crohn 's  disease, are related . We usual ly 
conclude t hat t hey are related if p < 0.05. In this case we say the d i fference or 
relat ionship i s  sign i ficant . 

There was a sign i ficant excess of  eat ing of  corn flakes ,  wheat , and bran 
among the Crohn ' s  pat ients .  The consumption of  d i fferent cereals was inter
related , people report ing one cereal being l ikely to report others . I n  James' 
opinion the principal associat ion of  Crohn ' s  disease was with corn flakes ,  
based on  the  apparent st rengt h of  t he associat ion .  Only one case had never 
eaten cornflakes .  

Several papers soon appeared in  which t h is study was repeated , wi th  varia
tions. None were identical in design to James' study and none appeared to 
support his findings .  We shall d iscuss that of  Mayberry et al. ( 1 978) .  They 
in terviewed 100 pat ients wi th  Crohn's  disease , mean durat ion n ine years . 
They obtained I 00 controls ,  matched for age and sex , from pat ients and t heir 
relat ives attendi ng a fract ure c l in ic .  Cases and controls were i nterviewed 
about t heir  cur rent break fast habits (Table 3E .2) .  The only  signi ficant 
di fference was an excess o f  fru i t  j u ice dr ink ing in  controls .  Cornflakes were 
eaten by 29 cases compared to 22 controls,  which was not sign i ficant . In th i s  
study there was  no part icular tendency for cases to report more foods t han 
controls . I ndeed , t he groups appear to  be very well  balanced . The paper con
tained some furt her interes t ing data.  The authors a lso asked cases whet her 
they knew of an associat ion bet ween food (unspeci fied) and Crohn ' s  d isease. 

Table 3E.2. Number of patients and controls regularly consuming certain foods 
at least twice weekly (Mayberry et al. 1 978) 

Cro h n ' s  pa1 ien1s  Con 1 ro l s  Significance 

Foods at  break fast (11 = 1 00) (n = 1 00) test 

Bread 9 1  86 
Toast 59 64 
Egg 3 1  37  
Fru i t  or fruit j u ice 1 4  3 0  p < 0 .02 
Porridge 20 1 8  
Weetabix,  Shreddies, o r  Shredded Wheat 2 1  1 9  
Cornflakes 29 22 
Special K 4 7 
Rice Krispies 6 6 
Sugar Pu ffs 3 
Bran or Al l  Bran 1 3  1 2  
Muesli 3 1 0  
Any cereal 5 5  55  
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The association with cornflakes was reported by 29, and 1 2  of these had 
stopped eating them, having previously eaten them regularly. In their 29 
matched controls, three were past cornflakes eaters . Of the 7 1  Crohn's 
patients who were unaware of the association, 21 had discontinued eating 
cornflakes compared to IO of their 7 1  controls. The authors remarked 
'seemingly patients with Crohn's  disease had significantly reduced their con
sumption of cornflakes compared with controls, irrespective of whether they 
were aware of the possible association ' .  

1 .  Are the cases and controls comparable i n  either of these studies? 
2. What other sources of bias could there be in these designs? 
3 .  What is the main point of difference in design between the study of James 

and that of Mayberry et al. ? 

4. In  the study of Mayberry et al. , how many Crohn's  cases and how many 
controls had ever been regular eaters of cornflakes? How does this 
compare with James' findings? 

5. Why did James think cornflakes were particularly important? 
6. For the data of Table 3E. l ,  calculate the percentage of cases and controls 

who said that they ate the various cereals . Now divided the proportion of  
cases who said that they had eaten the cereal by the proportion of controls 
who reported eating it. This tells us, roughly, how much more likely cases 
to report the cereal than were controls .  Do you think cornflakes are 
particularly important? 

7 .  If we have an excess of all cereals when we ask what was ever eaten, and 
none when we ask what is eaten now, what possible factors could account 
for this? 



4.  Summarizing data 

4.1.  Types of data 

In Chapters 2 and 3 we looked at ways in which data are collected . In this 
chapter we shall see how data can be summarized to help to reveal informa
tion they contain .  We do this by calculating numbers from the data which 
extract the important material . These numbers are called statistics. A statistic 
is anything calculated from the data alone. 

I t  is often useful to. distinguish between three types of data: qualitative; 
discrete quantitative ; and continuous quantitative. 

Qualitative data arise when individuals may fall into separate classes . 
These classes may have no numerical relationship with one another at all , e .g .  
sex : male, female; types of dwelling: house, maisonette, flat, lodgings; eye 
colour: brown, grey, blue, green; etc . 

Quantitative data are numerical , arising from counts or measurements . I f  
the values of the measurements are integers (whole numbers), like the number 
of people in a household, or number of teeth which have been filled, these 
data are said to be discrete. If the values of the measurements can take any 
number in a range, such as height or weight, the data are said to be 
continuous. 

In practice there is overlap between these categories . Most continuous data 
are limited by the accuracy with which measurements can be made. Human 
height, for example, is difficult to measure more accurately than to the 
nearest millimetre and is more usually measured to the nearest centimetre. So 
only a finite set of possible measurements is actually available, although the 
quantity ' height' can take an infinite number of possible values , and the 
measured height is really discrete. However, the methods described below for 
continuous data will be seen to be those appropriate for its analysis. 

We shall refer to qualities or quantities such as sex, height, age, etc . as 
variables, because they vary from one member of a sample to another. A 
qualitative variable is also termed a categorical variable or an attribute. We 
shall use these terms interchangeably. 

4.2. Frequency distributions 

When data are purely qualitative, the simplest way to deal with them is to 
count the number of cases in each category. For example, in the analysis of 



Table 4.1.  Principal diagnosis of patients in Tooting Bee Hospital on 2 3  May 1973 (Bewley et al. 1 9 74} 

Diagnosis Schizophrenia 

Number of cases 474 

Affective 
il lness 

277 

Organic brain 
syndrome 

405 

Subnormality Alcoholism 

58 57 

Other and 
not known 

1 96 

Total 

1 467 
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the census of  a psychiatric hospital population described in Chapter 3 
(Bewley et al. 1 975) one of  the variables of interest was the patient' s  principal 
diagnosis. To summarize these data, we count the number of patients having 
each diagnosis. The results are shown in Table 4. 1 .  

The count of individuals having a particular quality is called the frequency 

of that quality .  For example, the frequency of schizophrenia is 474 . The 
proportion of individuals having the quality is called the relativefrequency or 
proportionalfrequency. The relative frequency of schizophrenia is 474/1467 
= 0.32 or 32 per cent. The set of frequencies of all the possibilities is called 
the frequency distribution of the variables . 

In this census we assessed whether patients were ' l ikely to be discharged' ,  
'possibly to  be  discharged' or 'unlikely to  be  discharged' .  The frequencies of  
these categories are shown in Table 4 .2 .  Likelihood of discharge is a 
qualitative variable, l ike diagnosis, but the categories are ordered . This 
enables us to use another set of summary statistics, the cumulative 
frequencies . The cumulativefrequency for a value of a variable is the number 
of individuals with values less than or equal to that value. Thus, i f  we order 
l ikelihood of discharge from 'unlikely' , through 'possibly' to ' likely' the 
cumulative frequencies are 87 1 ,  1 2 10  ( = 87 1 + 339) and 1467. The relative 

cumulative frequency for a value is the proportion of individuals in the 
sample with values less than or equal to that value. For the example they are 
0.59 ( = 87 1 / 1 467), 0 . 82 and 1 .00. Thus we can see that the proportion of 
patients for whom discharge was not thought likely was 0 .82 or 82 per cent . 

Table 4.2. Likelihood of discharge of patients in Tooting Bee Hospital (Bewley 
et al. 1 974) 

Cumulative Relative cumulat ive 
Frequency Relative frequency frequency frequency 

Unlikely to be 
discharged 87 1  0.59 87 1 0.59 

Possibly to be 
discharged 339 0.23 1 2 1 0  0.82 

Likely to be 
discharged 257 0 . 1 8  1467 1 .00 

Total 1 467 1 .00 1467 1 .00 

As we have noted, likelihood of discharge is a qualitative variable, with 
ordered categories . Sometimes this ordering is taken into account in analysis, 
sometimes not . Although the categories are ordered this is not quantitative 
data. There is no sense in which the difference between ' likely' and 'possibly' 
is the same as the difference between 'possibly' and ' unlikely ' .  

Table 4 . 3  shows the frequency distribution of  a quantitative variable, 
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Table 4.3. Parity of 1 2  5 women attending antenatal clinics at 
St George's  Hospital 

Relative Relative cumulative 
frequency Cumulative frequency 

Parity Frequency (per cent) frequency (per cent) 

0 59 47.2 59 47.2 
l 44 35 .2 1 03 82.4 
2 1 4  1 1 .2 1 1 7 93 .6 
3 3 2.4 1 20 96.0 
4 4 3 .2  1 24 99.2 
5 l 0.8 1 25 1 00.0 

Total 1 25 1 00.0 125 100.0 

parity. This shows the number of previous pregnancies for a sample of 
women booking for delivery at St George's Hospital . Only certain values are 
possible, as the number of pregnancies must be an integer, so this variable is 
discrete. The frequency of each separate value is given . 

Table 4.4 shows a similar distribution for a continuous variable, forced 
expiratory volume in one second (FEVl )  in a sample of male medical 
students . The data themselves are shown in Table 4.5 . This frequency 
distribution is not a very informative summary of the data, most of the 
values occurring only once. The cumulative frequencies are quite satis
factory, however, and we can easily pick out such things as the halfway 
point, 4 . 1 litres . 

To get a useful frequency distribution we need to divide the FEV I scale into 
class intervals, e .g .  from 3 .0  to 3 . 5 ,  from 3 . 5  to 4.0 and so on, and count the 
number of individuals with FEVI ' s in each class interval. The class intervals 
should not overlap, so we must decide which interval contains the boundary 
point to avoid it being counted twice . It is usual to put the lower boundary of  
an interval into that interval and the higher boundary into the  next interval .  

Table 4.5. FEVl (litres) of 5 7  male 
medical students 

4.47 4.47 3 .48 5 .00 3 .42 3 .78 
3 . 1 0  3 .57 4.20 4 .50 3 .60 3 .75 
4 .50 2.85 3 . 70 4.20 3 .20 4.05 
4 .90 5 . 1 0  5 .30 4. 1 6  4.56 3.54 
3 .50 5 .20 4 .7 1  3 .70 4.78 4 . 1 4  
4. 1 4  4.80 4. 1 0  3 .83 3 . 60 2 .98 
4.32 5 . 1 0  4.30 3 .90 3 .96 3 .54 
4.80 4.30 3 . 39 4.47 3 . 1 9  
3 . 1 0  4 .70 3 .69 3 .30 2.85 
4.68 4.08 4.44 5 .43 3 .04 



Frequency distributions 55  

Table 4.4. Frequency distribution of  FEVl (litres) in  5 7 
male medical students 

Relative cumulative 
Cumulative frequency 

FEV l Frequency frequency (per cent) 

2 .85 2 2 3 . 5  
2 .98 I 3 5 . 3  
3 .09 1 4 7 .0 
3 . 1 0  2 6 10 .5  
3 . 1 9  7 1 2 . 3  
3 .20 8 14.0 
3 .30 9 1 5 . 8  
3 .39 I O  1 7 . 5  
3 .42 I I  1 9. 3  
3 .48 1 2  2 1 . 1  
3 .50 1 1 3  22.8 
3 . 54 2 1 5  26.3 
3 . 57 I 1 6  28. J 
3 .60 2 1 8  3 1 .6 
3 .69 I 1 9  33 . 3  
3 . 70 2 2 1  36.8 

3.75 22 38.6 
3 . 78 23 40.4 
3 . 83 24 42. 1  
3 .90 I 25 43 .9 
3 .96 I 26 45 .6 
4.05 I 27 47.4 
4 .08 I 28 49. l 
4 . 1 0  I 29 50.4 
4 . 1 4  2 3 1  54.9 
4 . 1 6  I 32 56. J 
4 .20 2 34 59.6 
4.30 2 36 63 .2 
4.32 I 37 64.9 
4.44 I 38 66.7 
4.47 3 4 1  7 1 .9 

4.50 2 43 75.4 
4.56 I 44 77.2 
4.68 I 45 78 .9 
4 .70 I 46 80.7 
4 . 7 1  I 47 82.5 
4.78 I 48 84.2 
4.80 2 50 87.7 
4 .90 I 5 1  89.5 
5 .00 I 52 9 1 .2 
5 . 1 0  2 54 94.7 
5 .20 55 96. 5  
5 . 30 56 98.2 
5 .43 57 1 00.0 
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Table 4.6. Frequency distribution of 
FEVl in 57 male medical students: a 
more practical version 

Relative frequency 
FEY ! Frequency (per cent) 

2.0- 0 0.0 
2.5- 3 5 .3  
3 .0- 9 1 5 . 8  
3 . 5 - 1 4  24.6 
4.0- 1 5  26.3 
4.5- 1 0  17 . 5  
5 .0- 6 10 .5  
5 .5- 0 0.0 

Total 57 1 00.0 

Thus the interval starting at 3 .0 an ending at 3 . 5  contains 3 . 0  but not 3 . 5 .  We 
can write this as 

or 
or 

Table 4.7. 

3 . 0-

3 . 0-3 . 5 -
3 .0-3 .499 

Frequency distribution of 
FEVl in 57 male medical students: an 
alternative version 

Relative frequency 
FEY ! Frequency (per cent) 

2 .4- 0 0.0 
2.6- 0 0.0 
2.8- 3 5 . 3  
3 .0- 4 7.0 
3 .2- 3 3 .5  
3 .4- 6 1 0.5 
3 .6- 7 12 .3  
3 .8- 3 5 . 3  
4.0- 6 10 .5  
4.2- 5 8 .8  
4.4- 7 1 2 .3  
4.6- 4 7 .0  
4.8- 2 3 .5  
5 .0- 3 5 . 3  
5 .2- 2 3 .5 
5 .4- I 1 .8 
5 .6- 0 0.0 
5 .8- 0 0.0 

Total 57 100.0 
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If we take a starting point of 2 .5  and an interval of 0 .5 we get the frequency 
distribution shown in Table 4 .6 .  Note that this is not unique. If we take a 
starting point of 2 .4 and an interval of 0.2 we get a different distribution, as 
shown in Table 4. 7 .  

The frequency distribution can be  calculated easily and accurately using a 
computer. Manual calculation is not so easy but must be done carefully and 
systematically .  One way described by many texts (e.g .  Hill 1 97 1 )  is to set 
up a tally system, as in Fig. 4 . 1 .  We go through the data and for each 
individual make a tally mark by the appropriate interval. We then count up 
the number in each interval . In practice this is very difficult to do accurately, 
and it needs to be checked and double-checked. Hill ( 1 97 1 )  recommends 
writing each number on a card and dealing the cards into piles corresponding 
to the intervals .  It is then easy to check that each pile contains only those cases 
in that interval and count them . This is undoubtedly superior to the tally 
system. My own preferred method is to order the observations from lowest to 
highest before marking the interval boundaries and counting, or to use the 
stem and leaf plot described below. This is rather like starting from 
Table 4.4. 

F E 1.,1 1  

2 .  0 ·'·· 
2. 5 ..... 

·• c- .::. . ·-· 

-:0 c- --:.. .. . . _I 

:s .  5 4 .  �:.i -

4 .  �J ·v 4 .  5 -

4 .  5 ..... 5 .  0 -

5 .  0 5 .  5 -

5 .  5 

T o t a l  

I l l  
tttt 1 1 1 1  
tttt tttt 1 1 1 1  
tttt tttt tttt 
tttt tttt 
tttt I 

0 

9 

1 4  

1 5  

6 
0 

C" ..., 
·-· .. 

Fig. 4.1  Tally system for finding the frequency distribution of FEVl .  

4.3.  Histograms and other frequency graphs 

Graphical methods are very useful for examining frequency distributions .  
Figure 4 .2 shows a graph of the cumulative frequency distribution for the 
FEVI data. This is what is called a step function, for obvious reasons . We can 
smooth this by joining successive points where the cumulative frequency 
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Fig. 4.2 Cumulative frequency distribution of FEVl in a sample of male medical 
students. 

changes by straight l ines, to give a cumulative frequency polygon .  Figure 4 . 3  
shows this for the cumulative relative frequency distribution of FEY 1 .  This 
plot is very useful for calculating some of the summary statistics referred to in 
Section 4.5 .  

The most common way of depicting a frequency distribution is  by a histo

gram . This is a diagram where the class intervals are on an axis and rectangles 
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Fig. 4.3 Cumulative frequency polygon of FEVl .  
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5 9  

with heights or areas proportional to  the frequencies erected on them. Figure 
4.4 shows the histogram for the FEY 1 distribution in Table 4 .6 .  The vertical 
scale shows frequency, the number of observations in each interval .  Figure 
4.5 shows a histogram for the same distribution, with frequency per unit 
FEV l  (or frequency density) shown on the vertical axis . The distributions 
appear identical and we may well wonder whether it matters which method 
we choose . We see that it does matter when we consider a frequency distribu
tion with unequal intervals, as in Table 4 .8 .  If  we plot the histogram using the 
heights of the rectangles to represent relative frequency in the interval we get 
Fig. 4 .6 ,  whereas if we use the relative frequency per year we get Fig . 4. 7 .  
These histograms tell different stories . Figure 4 .6 suggests that the most 
common age for accident victims is between 1 5  and 44 years, whereas Fig. 4 .  7 
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Table 4.8. Distribution of age in people suffering 
accidents in the home (Whittington 1977) 

Relative frequency 
Age group (per cent) 

0- 4 25 .3  
5- 14  1 8 .9 

1 5-44 30.3 
45-64 1 3 .6 
65 + 1 1 . 7  

Relative frequency per year 
(per cent) 

5 .06 
1 .0 1  
1 .01  
0.68 
0.33 

suggests i t  is between 0 and 4. Figure 4. 7 is correct , Fig . 4.6 being distorted by 
the unequal class intervals . It is therefore preferable in general to use the 
frequency per unit rather than per class interval when plotting a histogram . 
The frequency for a particular interval is then represented by the area of the 
rectangle on that interval . Only when the class intervals are all equal can the 
frequency for the class interval be represented by the height of the rectangle . 

A different version of the histogram has been developed by Tukey ( 1 977) in 
his revolutionary book Exploratory data analysis. This is the stem and leaf 
plot (Fig. 4 .8) .  The rectangles are replaced by the numbers themselves . The 
'stem' is the first digit or digits of the number and the ' leaf' the trailing digit . 
The first row of the figure represents the numbers 2 . 8 ,  2 . 8 ,  2 .9 ,  which in the 
data are 2 . 85 ,  2 .85 ,  2 .98 .  The plot provides a good summary of data 
structure, while at the same time we can see other characteristics such as a 
tendency to prefer some trailing digits to others, called digit preference (see 
Chapter 1 5) .  It is also easy to construct and much less prone to error than the 
tally method of finding a frequency distribution . Tukey' s  ideas are now 
becoming widely accepted and we may expect to see stem and leaf plots 
appearing in the medical literature .  
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Fig. 4.8 Stem and leaf plot for the FEVl data. 

4.4. Shapes of frequency distribution 

Figure 4 .4 shows a frequency distribution of a shape often seen in medical 
data. The distribution is roughly symmetrical about its central value and has 
frequency concentrated about one central point . The most common value is 
called the mode of the distribution and Fig . 4.4 has one such point . It is 
unimodal. Figure 4.9 shows a very different shape . Here there are two 
distinct modes, one near 5 and the other near 8 . 5 .  This distribution is 
bimodal. We must be careful to distinguish between the unevenness in the 
histogram which results from using a small sample to represent a large 
population and those which result from genuine bimodality in the data. The 
trough between 6 and 7 in Fig. 4 .9 is very marked and might represent a 
genuine bimodality. In this case we have children some of whom may have a 
condition which raises the cholesterol level and some of whom do not . We 
actually have two separate populations represented with some overlap 
between them . However , almost all distributions encountered in medical 
statistics are unimodal . 
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Fig. 4.9 Serum cholesterol in children from kinships with familial hypercholes
terolaemia (Leonard et al. 1977). 

Figure 4. 1 0  differs from Figure 4.4 in a different way. We have already 
noted that the distribution of FEY I is symmetrical . The distribution of serum 
triglyceride is skew, that is, the distance from the central value to the extreme 
is much greater on one side than it is on the other. The parts of the histogram 
near the extreme are called the tails of the distribution . I f  the tail on the right 
is longer than the; tail on the left as in Fig. 4. 10 ,  the distribution is skew to the 

right or positively skew. If the tail on the left is longer, the distribution is 
skew to the left or negatively skew. If the tails are equal the distribution 
is symmetrical. Most distributions encountered in medical work are 
symmetrical or skew to the right , for reasons we shall discuss later 
(Section 7 .4) . 
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Fig. 4.10 Serum triglyceride i n  cord blood from 282 babies. 
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4.5.  Medians and quantiles 

We often want to summarize a frequency distribution in a few numbers, for 
ease of reporting or comparison . The most direct method is to use quantiles . 
The quantiles are sets of values which divide the distribution into a number of 
parts such that there are equal numbers of observations in each part. For 
example, the median is a quantile. The median is the central value of the 
distribution, such that half the points are less than or equal to it and half are 
greater than or equal to it. We can estimate any quantiles easily from the 
cumulative frequency distribution or a stem and leaf plot . For the FEV 1  data 
the median is 4 . 1 ,  the 29th value in Table 4.4. If we have an even number of 
points ,  we choose a value midway between the two central values . 

In general, we estimate the q quantile, the value such that a proportion q 

will be below it , as follows . We have n ordered observations which divide the 
scale into n + 1 parts : below the lowest observation, above the highest and 
between each adjacent pair .  The proportion of the distribution which lies 
below the ith observation is estimated by il(n + 1 ) .  We set this equal to q and 
get i = q(n + 1 ) . If i is an integer, the ith observation is the required quantile 
estimate. If not , let) be the integer part of i, the part before the decimal point . 
The quantile will lie between thejth and (j + 1 )th observations. We estimate 
it by 

xj + (xj + 1 - x) x (i - j )  

where xj and xj+ 1 are the jth and (j + 1 )th observations . For the median, for 
example, the 0 . 5  quantile, i = q'(n + 1) = 0.5(57 + 1 )  = 29, the 29th observa
tion as before. 

Other quantiles which are particularly useful are the quartiles of the 
distribution . The quartiles divide the distribution into four equal parts .  The 
second quartile is the median. For the FEV 1  data the first and third quartiles 
are 3 . 54 and 4.53 . For the first quartile, i = 0.25 x 58 = 14 . 5 .  The quartile is 
between the 1 4th and 1 5th observations, which are both 3 . 54 .  For the third 
quartile, i = 0.75 x 58 = 43 . 5 , so the quartile lies between the 42nd and 43rd 
observations, which are 4 .50 and 4.56.  The quantile is given by 4 .50 + 

(4.56 - 4. 50) x (43 . 5  - 43) = 4 .53 .  We often divide the distribution into 
100 centiles. The median is thus the 50th centile. For the 20th centile of FEY 1 ,  
i = 0.2 x 58 = 1 1 .6 ,  so the quantile is between the 1 1 th and 12th observa
tion, 3 .42 and 3 .48 , and can be estimated by 3 .42 + (3 .48 - 3 .42) x 
( 1 1 .6 - 1 1 ) = 3 .46. We can estimate these easily from Fig. 4 .3  by finding the 
position of the quantile on the vertical axis, e .g .  0.2 for the 20th centile or 0 .5  
for the median, drawing a horizontal line to intersect the cumulative 
frequency polygon, and reading the quantile off the horizontal axis .  

Tukey ( 1 977) uses the median, quartiles, maximum and minimum as a con
venient five figure summary of a distribution. He also suggested a neat graph , 
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Fig. 4.11 Box and whisker plots for FEVl and for serum triglyceride. 

the box and whisker plot which represents this (Fig. 4. 1 1 ) .  The box shows the 
distance between the quantiles , with the median marked as a line, and the 
'whiskers' show the extremes . The different shapes of the FEY l and serum 
triglyceride distributions is clear from the graph. 

4.6. The mean 

The median is not the only measure of central value for a distribution. 
Another is the arithmetic mean or average, usually referred to simply as the 
mean. This is found by taking the sum of the observations and dividing by 
their number. For example, consider the following artificial data :  

2 3 9 5 4 0 6 3 4 

The sum is 36 and there are 9 observations, so the mean is 36/9 = 4.0. 
At this point we shall need to introduce some algebraic notation, widely 

used in statistics . We denote the observations by 

There are n observations and the ith of these is X; . For the example, x4 = 5 and 
n = 9. The sum of all the X; is 

n 

� X; ; • I 

The summation sign is an upper-case Greek letter, sigma, the Greek S .  When 
it is obvious that we are adding the values of X; for all values of i, which runs 
from 1 to n ,  we abbreviate this to 
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or simply to l:x. 

The mean of the X; is denoted by x, pronounced 'x bar ' ,  and 

- 1 " X = - LJ X; 
n 

The sum of the 57 FEY l s  is 23 1 . 5 1  and hence the mean is 23 1 . 5 1 /57 = 4.06 .  
This is very close to the median, 4. 1 ,  so the median is within 1 per cent of the 
mean. This is not so for the triglyceride data . The median triglyceride is 0.46 
but the mean is 0.5 1 ,  which is higher . The median is 1 0  per cent away from the 
mean. If the distribution is symmetrical the mean and median will be about 
the same, but in a skew distribution they will not . If the distribution is skew to 
the right, as for serum triglyceride, the mean will be greater, i f  it is skew to the 
left the median will be greater . This is because the values in the tails affect the 
mean but not the median. 

The sample mean has much nicer mathematical properties than the median 
and is thus more useful for the comparison methods described later . The 
median is a very useful descriptive statistic, but not much used for other 
purposes . 

4.7. Variance and standard deviation 

The mean and median are measures of the central tendency or position of the 
middle of the distribution . We shall also need a measure of the spread, 
dispersion or variability of the distribution. 

One obvious measure is the range, the difference between the highest and 
lowest value. This is a useful descriptive measure, but it has two dis
advantages . First, i t  depends only on the extreme values and so can vary a lot 
from sample to sample. Secondly, it depends on the sample size. The larger 
the sample is, the further apart the extremes are l ikely to be. We can see this i f  
we  consider a sample of size 2 .  If  we add a third member to  the sample the 
range will only remain the same if the new observation falls between the other 
two, otherwise the range will increase. 

We can get round the second of these problems by using the interquartile 

range, the differences between the first and third quartiles . However , the 
interquartile range is quite variable from sample to sample and is also mathe
matically intractable. Although a useful descriptive measure, i t  is not the one 
preferred for purposes of comparison . 

The most commonly used measures of dispersion are the variance and 
standard deviation , which we shall now describe. We start by seeing how each 
observation differs from its mean. Table 4 .9 shows the deviations from the 
mean of the 9 observations of Section 4.6. 
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Table 4.9. Deviations from the mean of 9 
observations 

Deviations from Squared 
Observations the mean deviations 
X; (X; - .f) (X; - .f)2 

2 - 2  4 
3 - 1 1 
9 5 25 
5 1 1 
4 0 0 
0 - 4  1 6  
6 2 4 
3 - 1 1 
4 0 0 

36 0 52 

I f  the data are widely scattered, many of the observations , X; , will be far 
from the mean, x, and so many deviations, X; - x, will be large. If the data are 
narrowly scattered, very few observations will be far from the mean and so 
few deviations, X; - x, will be large. We need some kind of average deviation 
to measure the scatter. If we add all the deviations together, we get zero . This 
is bound to happen, because L(X; - x) = LX; - LX = LX; - nx and 
x = LX/n. I nstead, we square the deviations and then add them, as shown in 
Table 4.9 .  This removes the effect of sign; we are only measuring the size of  
the deviation, not the direction . This gives us L(X; - .i)2, in the example equal 
to 52, called the sum of squares about the mean, usually abbreviated to sum 

of squares. 

Clearly, the sum of squares will depend on the number of observations as 
well as the scatter. We want to find some kind of average squared deviation . 
This leads to a difficulty. Although we want an average squared deviation, we 
divide the sum of squares by (n - 1 ) ,  not n. This is not the obvious thing to do 
and puzzles many students of statistical methods. The reason is that we are 
interested in the scatter of the population rather than that of the sample, and 
dividing by n would lead to small samples producing lower estimates of varia
bility than large samples . The sum of squares is actually not proportional to 
n, but to (n - 1 ) .  See Appendix 4A. l for an example of this. 

The estimate of variability is called the variance, defined as follows : 

variance = --1- 2: (X; - x)i 
n - 1 

We have already said that L(X; - .i)2 is called the sum of squares. The 
quantity, n - 1 ,  is called the degrees of freedom of the variance estimate. The 
reason for this rather odd name is discussed in Appendix 7A. 
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We shall usually denote the variance by s2. In the example, the sum of squares 
is 52 and there are 9 observations, giving 8 degrees of freedom. Hence 

52 
s2 = - = 6 5 

8 
. 

The formula, 2:(x; - x')2, gives us a rather tedious calculation.  There are 
two other formulae for the sum of squares, which make the calculation easier 
to carry out : 

(2:x )2 
2:x.2 - --' - and 2:x2 - nx2 I 

n 
I 

These are simply algebraic manipulations of the first form and give exactly 
the same answers . The algebra is quite simple and is given in Appendix 4A.2 .  

For example, using the second formula for the 9 observations, we have: 

2:x/ = 22 + 32 + 92 + 52 + 42 + 02 + 62 + 32 + 42 
= 4 + 9 + 8 1  + 25 + 1 6  + 0 + 36 + 9 + 1 6  
= 1 96 

2:x; = 36 

52 = 
_l_ [2:x/ -

(2:x;)2 ] 
n - 1 n 

= 
_l_ ( 1 96 - 362 ) 
9 - 1 9 
1 

= 8 x ( 1 96 - 1 44) 

52 
8 

= 6 . 5 ,  as before 

On a calculator this is a much easier formula than the first, as the numbers 
need only be put in once. But it can be inaccurate, because we subtract one 
large number from another to get a small one . For this reason the first 
formula would be used in a computer program . 

The variance is calculated from the squares of the observations. This 
means that it is not in the same units as the observations, which limits its use 
as a descriptive statistic. The obvious answer to this is to take the square root, 
which will then have the same units as the observations and the mean. The 
square root of the variance is called the standard deviation . Standard 
deviation = s, where 

52 = 
_1_ [2:x/ - (2:x;)2 ] 
n - 1 n 
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Returning to the FEY 1 data, we calculate the variance and standard deviation 
as follows : 

n = 57 
�X; = 23 1 .5 1  

�x/ = 965 .4499 

(�x )2 
Sum of squares = �x/ - __ ; -

s2 

n 

= 965 .4499 - 23 1 .5 1 2 
57 

= 965 .4499 - 940.296 142 1 
= 25 . 1 53 757 9 

sum of squares 
n - 1 

25 . 1 537579 
57 - 1 

= 0.449 174248 

The standard deviation is 

s = ..Js2 = ..J0.4491 74248 
= 0.67024632 
= 0.67 litres 

Figure 4 . 1 2  shows the relationship for FEVl between mean, standard 
deviation and frequency distribution. We see that the majority of observa
tions are within one standard deviation of the mean, and nearly all within two 
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Fig. 4.12 Histogram of FEVl with mean and standard deviation. 
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Fig. 4.13 Histogram of serum triglyceride with mean and standard deviation. 

standard deviations of the mean. As Fig. 4 . 1 3  shows, this is true for the 
highly skew triglyceride data, too . In this case, however, the outlying 
observations are all in one tail of the distribution . 

For large data sets calculation of mean and standard deviation may be 
done from a frequency distribution rather than directly from the data. The 
methods are described by Hill ( 1 97 1 ) ,  but the current ease of access to 
computers has made them largely obsolete. 

4A. Appendix 

4A. 1 .  The divisor for the variance estimate 

The variance is found by dividing the sum of squares about the sample mean 
by (n - 1 ) ,  not by n. This is because we want the scatter about the population 
mean, and the scatter about the sample mean is always less . The sample mean 

Table 4A. 1 .  Population of 100 random 
digits for a sampling experiment 

9 l 0 7 5 6 9 5 8 8 
l 8 8 8 5 2 4 8 3 l 
2 8 8 5 8 4 0 I 9 

9 7 9 7 2 7 7 0 8 
7 0 2 8 8 7 2 5 4 l 
l 0 5 7 6 5 0 2 2 2 
6 5 5 7 4 7 3 3 3 
2 l 6 9 4 4 7 6 l 7 
l 6 3 8 0 5 7 4 8 6 
8 6 8 3 5 8 2 7 2 4 
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is 'closer' to the data points than is the population mean. We will try a little 
sampling experiment to show this. Table 4A. 1 shows a set of 100 random 
digits which we shall take as the population to be sampled . They have mean 
4 .74 and the sum of squares about the mean is 8 1 1 .24 .  Hence the average 
squared difference from the mean is 8 . 1 1 24. We can take samples of size two 
at random from this population using a pair of decimal dice, which wilJ 
enable us to choose any digit numbered from 00 to 99. The first pair chosen 
was 5 and 6 which has mean 5 . 5 .  The sum of squares about the population 
mean 4 .74 is 

(5 - 4. 74)2 + (6 - 4. 74)2 = 1 .6552 

The sum of squares about the sample mean is 

(5 - 5 .5)2 + (6 - 5 . 5)2 = 0.5 

The sum of squares about the population mean is greater than the sum of  
squares about the sample mean, and this will always be so .  Table 4A.2 shows 
this for 20 such samples of size two. The average sum of squares about the 
population mean is 1 3  .6 ,  and about the sample mean it is 5 .  7. Hence, dividing 
by the sample size (n = 2) we have mean square differences of 6.8 about the 
population mean and 2.9 about the sample mean. Compare this to 8 . 1 for the 
population as a whole. We see that the sum of squares about the population 
mean is quite close to 8 . 1 ,  while the sum of squares about the sample mean is 

Table 4A.2. Sampling pairs from Table 4A.1  

Sample L(X; - µ)2 I(x; - .f)2 

5 6 1 .6552 0.5 
8 8 2 1 .2552 0.0 
6 1 1 5  .5752 12 .5  
9 3 2 1 . 1 752 1 8 .0 
5 5 0 . 1 352 0.0 
7 7 10 .2 152 0 .0 
1 7 1 9.0952 1 8 .0 
9 8 28.7752 0.5 
3 3 6.0552 0.0 
5 1 14 .0552 8.0 
8 3 1 3 .6552 12 .5  
5 7 5 . 1 752 2.0 
5 2 5 .5752 4.5 
5 7 5 . 1 752 2.0 
8 8 2 1 .2552 0.0 
3 2 1 0.5352 0.5 
0 4 23.0152 8.0 
9 3 21 . 1 752 1 8 .0 
5 2 7 .5752 4.5 
6 9 1 9 .7352 4.5 

Mean 1 3 .6432 5 .7  



Table 4A.3. Sums of squares about population and sample mean for sets of 100 random samples from Table 4A.2 

Mean sums of squares 

About population mean About sample mean 
Number in sample 2:(x; - µ}2 2:(x; - x)2 

2 1 6 .2 9 . 1 
3 24.5  16 .2  
4 3 1 .9 23 .6 
5 40.2 3 1 .0 

1 0  79. 1 7 1 .8 

_!_ 2:(x, - µ)2 _!_ 2:(x, - x)2 
n n 

8 . 1  4.5 
8 .2  5 .4  
8 .0 5 .9 
8 .0 6 .2 
7 .9  7 .2  

-1- 2:(x - .f)2 
n - I ' 

9 . 1  
8 . 1  
7 .9 
7 . 7  
8 .0  

> 
:g co 
::i 
Q.. 
:;;:· 

'l ...... 
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much less ,  However, if we divide the sum of squares about the sample mean 
by (n - 1 ) ,  i . e .  1 ,  instead of n we have 5. 7 ,  which is not much different to the 
6.8 from the sum of squares about the population mean. 

Table 4A.3  shows the results of a similar experiment with more samples 
being taken. This was done on a computer, but is otherwise identical . The 
Table shows the two average sums of squares for sample sizes 2, 3, 4 and 5 .  
We see that the sum o f  squares about the sample mean is always too small, 
but if we divide it by (n - 1) instead of n the estimate is good . The sum of 
squares about the sample mean is proportional to n - 1 .  

4A. 2 .  Formulae for the sum of squares about the mean 

The different formulae for sums of squares are derived as follows : 

sum of squares = L(X; - x)2 
= L(X/ - 2X;X + .f2) 
= LX/ - L2X;X + LX2 
= LX/ - 2.XLX; + nx2 

because x has the same value for each of the n observations . 
Now, LX; = nx, so 

sum of squares = LX/ - 2.Xnx + nx2 
= LX/ - 2nx2 + nx2 
= LX/ - nx2 

d 
. - l _.  an puttmg x = - .c.X; n 

sum of squares = LX/ - n ( � LX; ) 2 
= LX2 - (LX;)2 

I 

We thus have three formulae for variance: 

si = _I_ L(X; - x)i n - 1 

n 

= _l_ (Lx/ - nX2) n - 1 

= 
_I _ [Lx/ - (LX;)2 ] n - I n 
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Exercise 4M 

Exercise 4M 

(Each branch is either true or false . )  

1 .  Which of t h e  following are qualitative variables: 

(a) sex; 
(b) parity; 

(c) diastolic blood pressure; 

(d) diagnosis; 

(e) height . 

2. Which of the following are continuous variables: 

(a) blood glucose; 

(b) peak expiratory flow rate; 

(c) age last birthday; 

(d) exact age; 

(e) family size . 

3. When a distribution is skew to the right: 

(a) the median is greater than the mean; 

(b) the distribution is unimodal ; 
(c) the tail on the left is shorter than the tail on the right ; 

(d) the standard deviation is less than the variance; 
(e) the majority of observations are less than the mean. 

4. The shape of a frequency distribution can be described using: 

(a) a box and whisker plot; 

(b) a histogram; 

(c) a stem and leaf plot ; 

(d) mean and variance; 
(e) a table of frequencies . 

5.  For the sample 3,  1 ,  7,  2,  2 :  

(a) the mean is 3 ;  

73 
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(b) the median is 7 ;  

(c) the mode is 2 ;  

(d) the range i s  1 ;  

(e) the variance is 5 . 5 .  

Exercise 4E 

Summarizing data 

In this exercise we shall find the frequency distribution of a set of measure
ments . We shall then summarize this using the mean and standard deviation 
and see how these relate to the frequency distribution. 

The following are random blood glucose levels obtained from a group of 
first year medical students (mmol/l): 

4 .7 3 .6 3 . 8  2.2 4.7 4. 1 3 . 6  4.0 4.4 5 . 1  
4 .2 4 . 1 4 .4 5 .0 3 .7 3 .6  2 .9 3 .7 4 .7 3 .4 
3 . 9  4 . 8  3 . 3  3 . 3  3 . 6  4.6 3 .4 4 . 5  3 . 3  4 .0  
3 . 4  4.0 3 . 8  4 . 1 3 . 8  4.4 4.9 4.9 4.3 6.0 

Make a stem and leaf plot for these data. I .  
2 .  Find the minimum, maximum and quartiles and sketch a box and whisker 

plot. 

3. Find the frequency distribution, using a class interval of 0 . 5 .  

4 .  Sketch the histogram of this frequency distribution . 

5 .  Calculate the mean of the sample. 

6. Calculate the sum of squares about the mean . 

7 .  Calculate the degrees of freedom for this sum of squares and estimate the 
variance. 

8. Calculate the standard deviation and find the mean ± one standard 
deviation and mean ± two standard deviations. 

9. Indicate these points on the histogram. What do you notice about their 
relationship to the frequency distribution? 



5 .  Presenting data 

5.1 .  Rates and proportions 

Having collected our data as described in Chapters 2 and 3 and extracted 
information from them using the methods of Chapter 4, we must find a way 
to convey this information to others . In this chapter we shall look at some of 
the methods of doing that. We begin with rates and proportions . 

When we have data in the form of frequencies, we often need to compare 
the frequency with certain conditions in groups containing different totals .  In 
Table 2 . 1 ,  for example, two groups of patient pairs were compared, 29 where 
the later patient.had a C-T scan and 89 where neither had a C-T scan. The 
later patient did better in 9 of the first group and 34 of the second group . To 
compare these frequencies we compare the proportions 9/29 and 34/89. 
These are 0. 3 1  and 0 .38 ,  and so we can conclude that there is little difference. 
In Table 2 . 1 ,  these were given as percentages, that is, the proportion out of 
1 00 rather than out of 1 ,  to avoid the decimal point. In Table 2. 7 ,  the Salk 
vaccine trial , the proportions contracting polio were presented as the number 
per 100 000 for the same reason. 

A rate expresses the frequency of the characteristic of interest per 1 000 (or 
per 100 000, etc . )  of the population. For example, in Table 3 .2, the results of 
the study of smoking by doctors , the data were presented as the number of 
deaths per 1 00 000 doctors per year. This is not a proportion, as a further 
adjustment has been made to allow for the time period observed. Further
more, the rate has been adjusted to take account of any differences in the age 
distributions of smokers and non-smokers using a method described i n  
Chapter 1 6 .  Sometimes the actual denominator for a rate may be  continually 
changing. The number of deaths from lung cancer among men in England 
and Wales for 1 983 was 26 502. The denominator for the death rate, the 
number of males in England and Wales , changed throughout 1 983 ,  as some 
died, some were born, some left the country and some entered it. The death 
rate is calculated by using a representative number , the estimated population 
at the end of June 1 983 ,  the middle of the year . This was 24 1 75 900, giving a 
death rate of 26 502/24 1 75 900, which equals 0.001 096, or 109 .6 deaths per 
1 00 000 at risk per year . A number of the rates used in medical statistics are 
described in Section 1 6 . 5 .  

The use of rates and proportions enables u s  to  compare frequencies 
obtained from unequal sized groups, base populations or time periods, but 
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we must beware of their use when their bases or denominators are not given. 
Victora ( 1 982) reported a drug advertisement sent to doctors which described 
the antibiotic phosphomycin as being ' 100 per cent effective in chronic 
urinary infections' . This is very impressive. How could we fail to prescribe a 
drug which is 1 00 per cent effective? The study on which this was based used 8 
patients, after excluding 'those whose urine contained phosphomycin
resistant bacteria' . If the advertisement has said the drug was effective on 1 00 
per cent of 8 cases, we would have been less impressed . Had we known that it 
worked in 1 00 per cent of 8 cases selected because it might work in them, we 
would have been stil l less impressed. The same paper quotes an advertisement 
for a cold remedy, where 100 per cent of patients showed improvement . This 
was out of 5 patients !  As Victora remarks, such small samples are under
standable in the study of very rare diseases, but not for the common cold ! 

Sometimes we can fool ourselves as well as others by omitting deno
minators . I once carried out a study of the distribution of the soft-tissue 
tumour Kaposi 's sarcoma in Tanzania (Bland et al. 1 977), and while writing it 
up I came across a paper setting out to do the same thing (Schmid 1 973) .  One 
of the factors studied was tribal group, of which there are over J OO in  
Tanzania .  This paper reported 'the tribal incidence in the Wabende, 
Wambwe and Washirazi is remarkable . . .  These small tribes, each with 
fewer than 90 000 people, constitute the group in which a tribal factor can be 
suspected' .  This is based on the following rates of tumours per 10 000 
population: national, 0. 1 ;  Wabende, 1 . 3 ;  Wambwe, 0 .7 ;  Washirazi , 1 . 3 .  
These are very big rates compared to the national, but the populations on 
which they are based are smal l :  8000, 1 4  000 and 15 000 respectively. To get a 
rate of 1 . 3 / 10  000 out of 8000 Wabende people we must have 8000 x 
1 . 3 / 10  000 = 1 case! Similarly we have one case among the 14  000 Wambwe 
and two among the 1 5  000 Washirazi . We can see that there are not enough 
data to draw the conclusions which the author has drawn. Rates and propor
tions are powerful tools and we must beware of them becoming detached 
from the original data. 

5.2.  Significant figures 

When we calculated the death rate due to lung cancer among men in 1 983 we 
quoted the answer as 0.00 1  096 or 109.6 per 100 000 per year. This is an 
approximation. The rate to the greatest number of figures my calculator will 
give is 0.00 1  096 2 1 5  653, and this number would probably go on inde
finitely, turning into a recurring series of digits . The decimal system of repre
senting numbers cannot in general represent fractions exactly .  We know that 
1 /2 = 0 .5 ,  but 1 /3 = 0.333 333 33 . . .  recurring infinitely. This does not 
usually worry us, because for most applications the difference between 0 .333  
and 1 /3 is too small to matter. Only the first few non-zero digits of the 
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number are important and we  call these the significant digits or  significant 

figures. There is usually little point in quoting statistical data to more than 
three significant figures . After all, it hardly matters whether the lung cancer 
mortality rate is 0 .00 1  096 or 0.00 1  097. The value 0.00 1  096 is given to four 
significant figures . The leading zeros are not significant, the first significant 
digit in this number being ' I ' .  To three significant figures we get 0.00 1  1 0, 
because the last digit is 6 and so the 9 which precedes it is rounded up to 1 0. 
Note that significant figures are not the same as decimal places . The number 
0.00 1  10 is given to five decimal places, the number of digits after the decimal 
point. When rounding to the nearest digit, we leave the last significant digit, 9 
in this case, if what follows it is less than 5 ,  and increase by one i f  what 
follows is greater than 5. When we have exactly 5, I would always round up, 
i .e. 1 .5 goes to 2 .  This means that 0, I ,  2,  3, 4 go down and 5, 6 ,  7 ,  8, 9 go up, 
which seems unbiased . Some writers take the view that 5 should go up half the 
time and down half the time, since it is exactly midway between the preceed
ing digit and that digit plus one. Various methods are suggested for doing this 
but I do not recommend them myself. In any case, it is usually a mistake to 
round to so few _"significant figures that this matters. 

How many significant figures we need depends on the use to which the 
number is to be put and on how accurate it is anyway. For example, if we have 
a sample of 1 0  sublingual temperatures measured to the nearest half degree, 
there is little point in quoting the mean to more than three significant figures . 
We shall consider this further in Chapter 8 .  One thing we should not do is to 
round numbers to a few significant figures before we have completed our 
calculations . In the lung cancer mortality rate example, suppose we round 
the numerator and denominator to two significant figures . We have 
27 000/24 000 000 = 0.00 1  1 25 and the answer is only correct to two figures . 
This can spread through calculations causing errors to build up.  We always 
try to retain several more significant figures than we require for the final 
answer. 

Consider Table 5. I .  This shows mortality data in terms of the exact 
numbers of deaths in one year. The table is taken from a much larger table 
(OPCS, DH2 No. 1 0) which shows the numbers dying from every cause of  
death in the International Classification of Diseases (ICD), which gives 
numerical codes to many hundreds of causes of death. The full table, which 
also gives deaths by age group, covers seventy A4 pages. Table 5. I shows 
deaths for broad groups of diseases called ICD chapters . This table is not a 
good way to present these data i f  we want to get an understanding of the 
frequency distribution of cause of death, and the differences between causes 
in men and women. This is even more true of the seventy-page original . This 
is not the purpose of the table, of course . It is a source of data, a reference 
document from which users extract information for their own purposes . Let 
us see how Table 5 .  I can be simplified. First, we can reduce the number of 
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Table 5.1.  Deaths by sex and cause, England and Wales , 1983,  (OPCS, DH2 
No. 10) 

Number of deaths 

ICD chapter and type of disease Males Females 

I Infectious and parasitic l 089 954 
I I  Neoplasms (cancers) 7 1  503 62 767 
Ill  Endocrine, nutritional and metabolic diseases and immunity 

disorders 2 566 3 587 
I V  Blood and blood-forming organs 592 920 
v Mental disorders I 340 2 802 
VI Nervous system and sense organs 3 637 3 987 
VI I  Circulatory system 1 39 256 143 559 
VI I I  Respiratory system 42 747 43 886 
IX Digestive system 6 691 9 147 
x Genito-urinary system 3 68 1 4 1 49 
XI  Complications of pregnancy, childbirth and the  puerperium 0 54 
XII  Skin  and subcutaneous tissues 140 365 
XI I I  Musculo-skeletal system and connective tissues 8 1 5  2 426 
XIV Congenital anomalies I 554 I 390 
xv Certain conditions originating in the perinatal period I 388 I 034 
XVI Signs, symptoms, and ill-defined conditions 1 1 47 I 426 
XVI I Injury and poisoning 1 1  273 7 736 

Total 289 4 1 9  290 1 89 

significant figures. Let us be extreme and reduce the data to one significant 
figure (Table 5 .2) . This makes comparisons rather easier, but it is still not 
obvious which are the most important causes of death . We can improve this 
by re-ordering the table to put the most frequent cause , diseases of  the 
circulatory system, first (Table 5 . 3 ) .  We can also combine a lot of the smaller 
categories into an 'others' group. I did this arbitrarily, by combining all those 
accounting for less than 2 per cent of the total . Now it is clear at a glance that 
the most important causes of death in England and Wales are diseases of the 
circulatory system, neoplasms and diseases of the respiratory system , and 
that these dwarf all the others . Of course, mortality is not the only indicator 
of the importance of a disease. Chapter XII I  of the ICD, diseases of the 
musculo-skeletal system and connective tissues, are easily seen from Table 
5 .2  to be only minor causes of death, but this group includes arthritis and 
rheumatism, the most important illnesses in their effects on daily activity. 

5.3.  Presenting tables 

Tables 5 . 1  to 5 . 3  illustrate a number of useful points about the presentation 
of tables. Like all the tables in this book, they are designed to stand alone 
from the text .  There is no need to refer to material buried in some paragraph 
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Table 5.2.  Deaths by sex and cause, England and Wales, 1 983,  rounded to one 
significant figure 

Number of deaths 

!CD chapter and type of disease 

I Infectious and parasitic 
I I  Neoplasms (cancers) 
I I I  Endocrine, nutritional and metabolic diseases and immunity 

disorders 
IV Blood and blood-forming organs 
v Mental disorders 
VI Nervous system and sense organs 
VI I  Circulatory system 
VI I I  Respiratory system 
IX Digestive system 
x Genito-urinary system 
XI Complications of pregnancy, childbirth and the puerperium 
XI I  Skin and  subcutaneous tissues 
xm Musculo-skeletal system and connective tissues 
XIV Congenital anomalies 
xv Certain conditions originating in the perinatal period 
XVI Signs, symptoms, and ill-defined conditions 
XVII Injury and poisoning 

Total 

Males 

I 000 
70 000 

3 000 
600 

I 000 
4 000 

1 00 000 
40 000 

7 000 
4 000 

0 
1 00 
800 

2 000 
I 000 
I 000 

I O  000 

300 000 

Females 

I 000 
60 000 

4 000 
900 

3 000 
4 000 

1 00 000 
40 000 

9 000 
4 000 

50 
400 

2 000 
I 000 
I 000 
I 000 
8 000 

300 000 

to interpret the table. A table is intended to communicate information, so it 
should be easy to read and understand . A table should have a clear title, 
stating clearly and unambiguously what the table represents. The rows and 
columns must also be labelled clearly. 

When proportions, rates or percentages are used in a table together with 
frequencies, they must be easy to distinguish from one another. This can be 
done, as in Table 2 .9 ,  by adding a ' % '  symbol, or by including a place of 

Table 5 . 3 .  Deaths by sex, England and Wales, 
1983,  for major causes 

Number of deaths 

ICD chapter and type of disease Males Females 

Circulatory system (VII)  1 00 000 1 00 000 
Neoplasms (cancers) ( I I )  70  000 60 000 
Respiratory system (VII  I )  40  000 40 000 
Injury and poisoning (XVI I) 1 0  000 8 000 
Digestive system (IX) 7 000 9 000 
Others 20 000 20 000 

Total 300 000 300 000 
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decimals .  The addition in Table 2 .9 of the 'total' row and the ' 1 00%'  makes it 
clear that the percentages are calculated from the number in the treatment 
group, rather than the number with that particular outcome or the total 
number of patients. 

5.4. Pie charts 

It is often convenient to present data pictorially .  Information can be con
veyed much more quickly by a diagram than by a table of numbers . This is 
particularly useful when data are being presented to an audience, as here the 
information has to be got across in a limited time. I t  can also help a reader get 
the salient points of a table of numbers . Unfortunately, unless great care is 
taken, diagrams can also be very misleading and should be treated only as an 
addition to numbers, not a replacement. 

We have already discussed methods of illustrating the frequency distribu
tion of a qualitative variable. We will now look at the equivalent of the 
histogram for qualitative data, the pie chart or pie diagram . This shows 
the relative frequency for each category by dividing a circle into sectors, the 
angles of which are proportional to the relative frequency . We thus multiply 
each relative frequency by 360, to give the corresponding angle in degrees. 

Table 5.4. Calculations for a pie chart of the 
distribution of cause of death 

Relative Angle 
Cause of death Frequency frequency (degrees) 

Circulatory system 1 43 559 0.49471 1 78 
Neoplasms (cancers) 62 767 0 .2 1630 78 
Respiratory system 43 886 0 . 1 5 1 23 54 
Injury and poisoning 7 736 0.02666 6 
Digestive system 9 1 47 0.03 1 52 I I  
Others 23 094 0.07958 29 

Total 290 1 89 1 .00000 360 

Table 5 .4 shows the calculation for drawing a pie chart to represent the 
distribution of cause of death for females, using the data of Tables 5 . 1  and 
5 . 3 .  The resulting pie chart is shown in Fig. 5 . 1 .  This diagram is said to 
resemble a pie cut into pieces for serving, hence the name. 

5.5.  Bar charts 

Histograms and pie charts depict the distribution of a single variable .  A bar 

chart or bar diagram shows the relationship between two variables, usually 
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Fig. 5.1 Pie chart showing the distribution o f  cause o f  death among females, 
England and Wales, 1 983.  

one being quantitative and the other qualitative or a quantitative variable 
which is grouped, such as time in years. The values of the first variable are 
shown by the heights of bars, one bar for each category of the second 
variable. Table 5 . 5  shows the mortality due to cancer of the oesophagus in 
England and Wales over a ten-year period. There appears from the table to be 
an increase in mortality over this period. Figure 5 .2 shows this relationship, 
the heights of the bars being proportional to the mortality. 

Table 5.5.  Cancer of the oesophagus: standardized mortality rate per 100 000 
per year, England and Wales, 1 960-69 

Year Mortality rate 

60 5 . 1  
6 1  5 .0  
62 5 .2  
63  5 .2  
64 5 .2  
65 5 .4 
66 5.4 
67 5 .6 
68 5 . 8  
69 6.0 

Bar charts can be used to represent relationships between more than two 
variables . Figure 5 . 3  shows the relationship between children's  reports of 
breathlessness and cigarette smoking by themselves and their parents . We can 
see quickly that the prevalence of the symptom increases both with the child ' s  
smoking and with that of their parents. 

In the published paper reporting these respiratory-symptom data (Bland et 

al. 1 978) the bar chart was not used; the data were given in the form of tables . 
They were thus available for other researchers to compare to their own or to 
carry out calculations upon. The bar chart was used to present the results 
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Fig. 5.2 Bar chart showing the relationship between mortality due to cancer of 
the oesophagus and year, England and Wales, 1960-69. 
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Fig. 5.3 Bar chart showing the relationship between the prevalence of self
reported breathlessness among schoolchildren and two possible causative 
factors. 

during a conference, where the most important thing was to convey an 
outline of the analysis quickly. 

5.6. Misleading graphs 

Figures 5 .  I and 5 .2 are clearly titled and labelled and can be read indepen
dently of the surrounding text. The principles of clarity outlined for tables 
apply equally here. After all , a diagram is a method of conveying information 
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Fig. 5.4 Bar chart with zero omitted on the vertical scale. 
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quickly and this object is defeated if  the reader or audience has to spend time 
trying to sort out exactly what a diagram really means . Because the visual 
impact of diagrams can be so great, further problems arise in their use. 

The first of these is the missing zero. Figure 5 .4 shows a second bar chart 
representing the data of Table 5 . 5 .  This chart appears to show a very rapid 
increase in mortality, compared to the gradual increase shown in Fig . 5 .2 .  
Yet both show the same data. Figure 5 .4 omits most of the vertical scale, and 
instead stretches that small part of the scale where the change takes place. 
Even when we are aware of this, it is difficult to look at this graph and not 
think that it shows a massive increase in mortality. It helps if  we visualize the 
baseline as being somewhere near the bottom of the page. 

There is no zero on the horizontal axis in Figs 5 . 2  and 5 .4, either. There are 
two reasons for this .  There is no practical 'zero time' on the calendar; we use · 
an arbitrary zero. Also , there is an unstated assumption that mortality rates 

Table 5.6. FEVl and height for 20 male medical 
students 

Height (cm) FEY 1 ( litres) Height (cm) FEY ! (litres) 

174 .0 4 .32 1 67.0 3 .54 
1 80 .7  4 .80 1 7 1 .2 3 .42 
1 83 . 7  4.68 1 77 .4  3 .60 
1 77 .0  5 .43 1 7 1 .3 3 . 20 
177 .0 3 .09 1 83 . 6  4.56 
1 72 .0  3 .78 1 83 . 1  4 .78 
1 76 .0  3 . 75 1 72 .0 3 .60 
1 77 .0  4.05 1 8 1 .0 3 .96 
164.0 3 . 54 1 70.4 3 . 1 9  
178 .0 2 .98 1 7 1 . 1  2 .85 
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vary with time and not the other way round. See Chapter 1 1  for further 
discussion of this point . 

In his highly recommended book on statistical chicanery, Darrell Huff 
( 1 954) recounts that the president of a chapter of the American Statistical 
Association criticized him for accusing presenters of data of trying to 
deceive. This statistician argued that incompetence was the problem. Huff's 
reply was that diagrams frequently sensationalize by exaggeration and rarely 
minimize anything, and that presenters of data rarely distort those data to 
make their case appear weaker than it is . The errors are too one-sided for us 
to ignore the possibility that we are being misled. 

When presenting data, especially graphically, be very careful that the data 
are shown fairly. When on the receiving end, beware ! 

5.7.  Scatter diagrams 

The bar chart would be a rather clumsy method for showing the relationship 
between two continuous variables, such as FEY 1 and height . For this we use a 
scatter diagram or scattergram . This is made by marking the scales of the two 
variables along horizontal and vertical axes . Each pair of measurements is 
plotted with a cross or some other suitable symbol at the point indicated by 
using the measurements as coordinates. If  there is more than one observation 
at the same coordinate we can indicate this by using the number of observa
tion in place of the chosen symbol . Table 5 . 6  shows observation of two 
continuous variables - height and forced expiratory volume in one minute 
(FEVI )  - for 20 male medical students. A scatter diagram for these data is 
shown in Fig. 5 . 5 .  
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Fig. 5.5 Scatter diagram showing the relationship between FEVl and height for 
a group of male medical students. 
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Fig. 5 . 6  Scatter diagram showing the relationship between FEV l and height, 
with the zero included on the FEVl scale. 

Figure 5 . 5  commits the crime of omitting the zero . Scatter diagrams almost 
always do this , yet if  we are to gauge the importance of the relationship 
between FEY l and height by the relative change in FEY ! over the height 
range we need the zero on the FEY ! scale. This is shown in Fig . 5 .6 .  We can 
see that height appears to be an important predictor of FEY 1 .  Figure 5 .6 does 
not include a zero on the height scale. As with Fig. 5 .2 ,  there is an unstated 
assumption that differences in height produce differences in FEY 1 ,  and 
although there is a true zero on the height scale, it is not of much interest . 

The origin is often omitted on scatter diagrams because we are usually 
concerned with the existence of a relationship and the distributions followed 
by the observations , rather than its magnitude. We estimate the latter in a 
different way, described in Chapter 1 1 .  

5.8. Line graphs and time series 

The data of Table 5 . 5  are ordered in a way that those of Table 5 . 6  are not , in 
that they are recorded at intervals in time. Such data are called a time series. If  
we plot a scatter diagram of such data, as in Fig. 5 .  7, it is natural to jo in suc
cessive points by lines to form a line graph. We do not even need to mark the 
points at all; all we need is the line . This would not be sensible in Fig. 5 . 6, as 
the observations are independent of one another and quite unrelated, 
whereas in Fig. 5 .  7 there is l ikely to be a relationship between adjacent 
points .  Here the mortality rate recorded for cancer of the oesophagus will 
depend on a number of things which vary over time, including possibly causal 
factors, such as tobacco and alcohol consumption , and clinical factors , such 
as better diagnostic techniques and methods of treatment . 
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Fig. 5.7 Line graph showing changes in cancer of the oesophagus mortality over 
time. 

Line graphs are particularly useful when we want to show the change of 
more than one quantity over time. Figure 5 . 8  shows how patients' blood 
pressure changed when given an active treatment and a placebo in a double
blind cross-over trial . The difference in response to the two treatments is very 
clear . 
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Fig. 5.8 Line graph to show the response to oral nitrate and placebo of patients 
who have suffered heart failure. 

Unfortunately, l ine graphs are particularly at risk of undergoing the sort of 
distortion of missing zero described in Section 5 . 5 .  Figure 5 .9  shows a line 
graph with a truncated scale, corresponding to Fig. 5 . 3 .  Just as there, the 
message of the graph is a dramatic increase in mortality, which the data them
selves do not really support . We can make this even more dramatic by 
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Fig. 5.9 Line graph with a missing zero. 

stretching the vertical scale in Fig . 5 . 9 , to give Fig . 5 . 1 0 . The effect is now 
really impressive and much more likely than Fig. 5. 7 to attract research 
funds , Nobel prizes and interviews on television .  In his excellent book Ho w 

to lie with statistics, Huff ( 1 954) aptly names such horrors 'gee-whiz graphs ' .  
They are even better i f  we omit the scales altogether and show only the 
soaring line, but by then we have soared out of the realms of statistics and 
into advertising . 

This is not to say that authors who show only part of the scale are deli
berately trying to mislead . There are often good arguments against graphs 
with vast areas of boring blank paper. In Fig. 5 . 8 ,  we are not interested in 
blood pressures near zero and can feel quite justified in excluding them. 
Furthermore, it is the comparison of the two lines which is important, not 
their absolute magnitudes . In Fig. 5 . 9  we certainly are interested in zero 
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Fig. 5 .10 Line graph with a stretched vertical scale, a 'gee-whiz' graph. 
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Fig. 5.11 Tuberculosis mortality in England and Wales, 1871  to 1971  (DHSS 
1 976}. 

mortality; it is surely what we are aiming for. The point is that graphs can so 
easily mislead the unwary reader, so let the reader beware. 

5.9. Logarithmic scales 

Figure 5 . 1 1  shows a line graph representing the fall in tuberculosis mortality 
in England and Wales over 100 years. We can see a rather unsteady curve, 
showing the continuing decline in the disease. Figure 5 . 1 2  shows the same 
data, with the mortality plotted on a logarithmic (or log) scale . A log scale is 
one where two pairs of points will be the same distance apart if their ratios are 
equal, rather than their differences . Thus the distance between 1 and 1 0  is 
equal to that between 10 and 100, not to that between 10 and 1 9. (See 
Appendix SA if you do not understand this.) Figure 5 . 1 2  shows a clear kink in 
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Fig. 5 .12 Tuberculosis mortality shown on a log scale. 
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the curve about 1 950, the time when a number of effective anti-TB measures, 
chemotherapy with streptomycin, BCG vaccine, and mass screening with X
rays were introduced . If we consider the properties of logarithms (Appendix 
5A), we can see how the log scale for the tuberculosis mortality data produced 
such sharp changes in the curve. If the relationship is such that the mortality 
is falling with a constant proportion, such as 10 per cent per year, the absolute 
fall each year depends on the absolute level in the preceding year : 

mortality in 1 960 = constant x mortality in 1 959 

So if we plot mortality on a log scale we get : 

log (mortality in 1 960) = log (constant) + log (mortality in 1 959) 

For mortality in 1 96 1 ,  we have 

log (mortality in 1 96 1 )  log (constant) + log (mortality i n  1 960) 
log (constant) + log (constant) + log 
(mortality in 1 959) 
2 x log (constant) + log (mortality in 1 959). 

Hence we get a straight-line relationship between log mortality and time t:  

log (mortality after t years) = t x log (constant) + log (mortality at start) 

When the constant proportion changes, the slope of the straight l ine formed 
by plotting log (mortality) against time changes and there is a very obvious 
kink in the line. 

Log scales are very useful analytic tools . However, a graph on a log scale 
can be very misleading if the reader does not allow for the nature of the scale . 
Figure 5 . 1 2  shows the increased rate of reduction in mortality associated with 
the anti-TB measures quite plainly, but it gives the impression that these 
measures were important in the decline of TB. This is not so. If we look at the 
corresponding point in Fig. 5 . 1 1 ,  we can see that all these measures did was to 
accelerate a decline which had been going on for a long time (see Radical 
Statistics Health Group 1976). 

Appendix 5A 

Logarithms 

Logarithms are not simply a method of calculation dating from before the 
computer age, but a set of fundamental mathematical functions. Because of 
their special properties they are much used in statistics. We shall start with 
logarithms (or ·logs for short) to base 10 ,  the common logarithms used in 
calculations. The log to base 10  of a number x is y where 

x = l OY 



90 Presenting data 

We write y = log10(x) .  Thus for example log10( 1 0) = 1 ,  log10( 1 00) = 2, 
log10( 1 000) = 3, log10( 1 0  000) = 4 and so on. If we multiply two numbers, the 
log of the product is the sum of their logs : 

For example, 

log(xy) = log(x) + log(y) 

1 00 x 1 000 1 02 x 1 03 
1 02 + 3  
1 05 
1 00 000 

Or in log terms :  

Hence 

log10( 1 00 x 1 000) = log10( 100) + lofo(l OOO) 
= 2 + 3  
= 5 

100 x 1 000 = 1 05 
= 1 00 000 

This means that any multiplicative relationship of the form 

y = a x b x c x d  

can be made additive by a log transformation: 

log(y) = log(a) + log(b) + log(c) + log(d) 

This is the process underlying the fit to the Lognormal Distribution described 
in Section 7 .4. 

There is no need to use 10 as the base for logarithms. We can use any 
number. The log of a number x to base b can be found from the log to base a 

by a simple calculation : 

I ( ) 
log0(x) 

ogb x = 
log0(b) 

Ten is convenient for arithmetic using log tables, but for other purposes it is 
less so. For example, the gradient, slope or differential of the curve, 
y = log10(x) is log10(e)/x, where e = 2.7 1 8  28 1 . . .  is a constant which does 
not depend on the base of the logarithm. This leads to awkward constants 
spreading through formulae. To keep this to a minimum we use logs to the 
base e, called natural or Napierian logarithms after the mathematicians John 
Napier. This is the logarithm usually produced by LOG(X) functions in 
computer languages . 

Figure 5A. I shows the log curve for three different bases , 2, e and 10 .  The 
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Fig. 5A.1 Logarithmic curves to three different bases. 

curves all go through the point ( 1 ,0), i . e .  log( l )  = 0. As x approaches 0, log(x) 
becomes a larger and larger negative number, tending towards minus infinity 
as x tends to zero. There are no logs of negative numbers . As x increases from 
1 ,  the curve becomes flatter and flatter. Though log(x) continues to increase, 
it does so more and more slowly. The curves all go through (base, 1 ) ,  i . e .  
log(base) = 1 .  The curve for log to the base 2 goes through (2, 1 ) ,  (4,2), (8 ,3) 
because 21 = 2,  22 = 4, 23 = 8 .  We can see that the effect of replacing data by 
their logs wil l  be to stretch out the scale at the lower end and contract it at the 
upper. 

We often work with logarithms of data rather than the data themselves . 
This may have several advantages . Multiplicative relationships may become 
additive, curves may become straight lines , and skew distributions may 
become symmetrical . See Chapters 7, 10, and 1 1 .  

Exercise 5M 

(Each branch is either true or false . )  

1 .  'After treatment with Wondermycin, 66.67 per cent of patients made a 

complete recovery . '  

(a) Wondermycin is wonderful .  

(b) This statement may be misleading because the denominator is not 
given . 
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(c) The number of significant figures used suggest a degree of precision 
which may not be present . 

(d) Some control information is required before we can draw any con
clusions about Wondermycin. 

(e) There may be only a very small number of patients .  

2 .  The number 1729. 54371: 

(a) to two significant figures is 1 700; 

(b) to three significant figures is 1 720; 

(c) to six decimal places is 1 729.54; 

(d) to three decimal places is 1 729. 544; 

(e) to five significant figures is 1 729 . 5 .  

3 .  Figure SM. 1 :  

(a) shows a histogram; 

(b) should have the vertical axis labelled; 

(c) should show the zero on the vertical axis ; 

(d) should show the zero on the horizontal axis; 

(e) should show the units for the vertical axis . 

I n fan t m o rta l i ty ,  1 9 6 0-.. 1 9 7 9 ,  U S A  

-
--

-
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Fig. 5M. 1  A dubious graph. 
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4. Logarithmic scales used in graphs showing time trends: 

(a) show changes in the trend clearly; 

(b) often produce straight lines; 
(c) give a clear idea of the magnitude of changes; 

(d) should show the zero point from the original scale; 
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(e) compress intervals between large numbers compared to those between 
small numbers. 

S. The following methods can be used to show the relationship between two 

variables: 

(a) histogram ; 

(b) pie chart; 

(c) scatter diagram; 

(d) bar chart; 

(e) line graph. 

Exercise 5E 

In this exercise we shall display graphically some of the data we have studied 
so far . 

1 .  Table 4 . 1 shows diagnoses of patients in a hospital census . Display these 
data as a graph. 

2 .  Table 2 .  7 shows the paralytic polio rates for several groups of children. 
Construct a bar chart for the results from the randomized control areas . 

3 .  Table 3 .2 shows some results from the study of mortality in British 
doctors . Show these graphically. 

4 .  Table 4.3 shows the parity of a group of women. Show these 
graphically. 
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5. Table 5E. 1  shows the number� of geriatric admissions in Wandsworth 
Health District for each week from May to September in 1 982 and 1 983 .  
Show these data graphically. Why do you think the two years were different? 

Table 5E. 1 .  Weekly geriatric admissions in Wandsworth Health District from 
May to September, 1982 and 1983 (Fish et al. 1985) 

Week I 982 I 983 Week I 982 I 983 

I 24 20 1 2  1 1  25 
2 22 1 7  1 3  6 22 
3 2 1  2 1  I4  I O  26 
4 22 1 7  1 5  1 3  I 2  
5 24 22 1 6  1 9  3 3  
6 I 5  23 1 7  1 3  1 9  
7 23 20 I 8  1 7  2 I  
8 2 I  I 6  I 9  I O  2 8  
9 I 8  24 20 I 6  I 9  

I O  2 I  2 1  2 1  24 I 3  
I I  1 7  20 22 1 5  29 



6. Probability 

6.1.  Probability 

We often want to use data from a sample to draw conclusions about the 
population from which it is drawn. For example, we might observe that a 
sample of patients given a new treatment respond better than patients given 
an old treatment on a clinical trial . We want to know whether the improve
ment would be seen in the whole population of patients, or if it could be due 
to chance . The theory of probability enables us to link samples and popula
tions, and to draw conclusions about populations from samples. We shall 
start the discussion of probability with some simple randomizing devices, 
such as coins and dice, but the relevance to medical problems should soon 
became apparent . 

We first ask what exactly is meant by 'probability' . There are several dif
ferent approaches to this in statistics. We shall take the frequency definition. 
The probability that an event will happen under given circumstances may be 
defined as the proportion of trials in which the event would occur in the long 
run. For example, i f  we toss a coin it comes down either heads or tails . Before 
we toss it , we have no way of knowing which will happen, but we do know 
that it will either be heads of tails. After we have tossed it, of course, we know 
exactly what the outcome is. If  we carry on tossing our coin, and it is a fair 
coin,  we should get several heads and several tails. If we go on doing this for 
long enough, then we would expect to get as many heads as we do tails, 
because there is no reason to suppose the 'head' on the coin is any different to 
the 'tail ' .  So the probability of a head being thrown is half, because in the 
long run a head occurs on half of the throws . The number of heads which 
might arise in several tosses of the coin is called a random variable, that is, a 
variable which can take more than one value with given probabilities. In the 
same way, a die can show six faces , numbered one to six, with equal 
probability. We can investigate such random variables as the number of sixes 
in a given number of throws, the number of throws before the first six, and so 
on. 

The same definition of probability applies to continuous measurement, 
such as human height . For example, suppose the median height in a popula
tion of women is 1 68 cm. Then half the women are above 1 68 cm in height .  I f  
we  choose women a t  random (i .e .  without the characteristics of  the woman 
influencing the choice) then in the long run half the women will have heights 
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above 1 68 cm. The probability of a woman having height above 1 68 cm is 
one half. Similarly, if 1 I 10  of the women have height greater than 1 80 cm, a 
woman chosen at random will have height greater than 1 80 cm with pro
bability 1 / 10 .  In the same way we can find the probability of height being 
between any given limits . When we measure a continuous quantity we are 
always limited by the method of measurement , and so when we say a 
woman's height is 1 70 cm we mean that it is between, say, 1 69 . 5  cm and 
1 70 .5  cm, depending on the accuracy with which we measure. So what we are 
interested in is the probability of the random variable taking values between 
certain limits rather than particular values. 

6.2 . Properties of probability 

The following simple properties follow from the definition of probability. 

1 .  A probability l ies between 0.0 and 1 .0. When the event never happens 
the probability is 0.0, when it always happens the probability is 1 .0. 

2 .  Suppose two events are mutually exclusive, i .e .  when one happens the 
other cannot happen . Then the probability that one or the other happens is 
the sum of their probabilities. For example, a die may show a one or a two, 
but not both. The probability that it shows a one or a two = 1 /6 + 1 /6 = 
216. 

3 .  Suppose two events are independent, i . e .  knowing one has happened 
tells us nothing about whether the other happens . Then the probability that 
both happen is the product of their probabilities. For example, suppose we 
toss a coin twice. Then the second toss is independent of the first toss, and the 
probability of two heads occurring is 1 12 x 1 12 = 1 I4. It is not quite so easy 
to see why this must be so. We can list all the possibilities for the outcome of 
two coins: 

head head 
head tail 
tail head 
tail tail 

These are equally likely events, so the probability of 'head head' must be 1 14 .  
More generally, consider two independent events, A and B .  The proportion 
of times A happens in the long run is the probability of A. Since A and B are 
independent, of those times when A happens, a proportion, equal to 
probability of B ,  will have B happen also . Hence, the proportion of times that 
A and B happen together is the probability of A multiplied by the probability 
of B .  
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6.3. Probability distributions and random variables 

Suppose we have a set of events which are mutually exclusive and which 
includes all the events which can possibly happen. The sum of their 
probabilities is 1 .0 .  The set of these probabilities make up a probability 

distribution . For example, i f  we toss a coin the two outcomes, head or tai l ,  
are mutually exclusive and these are the only events which can happen . The 
probability distribution is :  

Event 

Head 
Tail 

Probability 

1 /2 
1 /2 

We can represent this with a diagram, as in Fig. 6 . 1 .  Now, let us define a 
variable, which we will denote by the symbol X, such that X = 0 if the coin 
shows a tail and X = 1 if the coin shows a head. The value X is the number of  
heads shown on a single toss ,  which must be 0 or  1 .  We do not know before 
the toss what X will be, but do know the probability of it having any possible 
value. We call X a random variable, which is defined as a quantity which may 
take more than one value, each with a specified probability. 

What happens i f  we toss two coins at once? We now have four possible 
events: a head and a head, a head and a tail, a tail and a head, a tail and a tail . 
Clearly, these are equally likely and we would get each 1 I4 of the trials .  Now 
consider the number of heads, Y say. The variable Y has three possible 
values : 2 ,  1 ,  and O; Y = 2 only when we get a head and a head, so has 
probability 1 /4 .  Similarly Y = 0 only when we get a tail and a tail and has 
probability 1 /4 .  However, Y = 1 either when we get a head and tail , or when 
we have a tail and a head, and so has probability 1 I4 + 1 I4 = I 12. 

:Jl 0 .  8 
..i 0 .  7 
..... 
..... 0 . 6 
.c 0 .  5 
rd 
.c 0 .  4 
0 0 .  3 !.... 

0. 0 .  2 
0 .  1 

0 
0 1 

Fig. 6.1 Probability distribution for the number of heads shown in one toss of a 
coin. 
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:Ji 0 .  8 
.µ 0 .  7 

0 .  6 
..... 
.D 0 .  5 
rd 0. 4 .D 
0 0.  3 !.... 

a. 0 .  2 
0 .  1 

0 
0 1 2 

Fig. 6.2 Probability distribution for the number of heads shown in two tosses of a 
coin. 

We can write this probability distribution as : 

Prob( Y = 0) = 1 /4 
Prob( Y = I )  = 1 /2 
Prob( Y = 2) = 1 /4 

The probability distribution of Y is shown in Fig . 6 .2 .  

6.4.  The Binomial Distribution 

We have considered the probability distributions of two random variables : 
X, the number of heads in one toss of a coin, taking values 0 and I ,  and Y, the 

n = 1 5 ,  p = 0 .  5 

:Ji 0 .  3 
.µ 
..... 
..... 
.D 0 .  2 
rd 

.D 
0 
!.... 0 .  1 a. 

0 I I I I I I I 
0 5 1 0  15  2 0  

Fig. 6.3 Binomial Distribution for the number of heads shown i n  15  tosses o f  a 
coin. 
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number of heads in two tosses of a coin, taking values 0, 1 ,  or 2 .  
The distribution of X and Y are examples of  the Binomial Distribution . I t  

arises frequently in medical applications . There are two obvious extensions to 
what we have done, by taking the probability of 'head' to be other than half, 
and by taking more than two 'coins ' .  The probability of a ' head ' ,  or, more 
generally, of a 'success ' ,  is one parameter of the Binomial Distribution ,  the 
number of 'coins ' ,  or, more generally, the number of ' trials '  is the other 
parameter. 

For example, we could throw a die instead of a coin,  and record a success i f  
a six shows. This has probability 1 /6. Figures 6 .3  and 6 .4  show the Binomial 
Distributions for 1 5  tosses of a coin and for 10 throws of a die. These simple 
randomizing devices are of interest in themselves, but not of obvious rele
vance to medicine. However, suppose we are carrying out a random sample 
prevalence survey to estimate the unknown prevalence, p, of a disease. Since 
members of the sample are chosen at random and independently from the 
population, the probability of any subject chosen having the disease is p. We 
thus have a series of independent trials, each with probability of success, p ,  
and the number of  successes, i . e .  members of the sample with the disease, will 
follow a Binomial Distribution. As we shall see later , the properties of the 
Binomial Distribution enable us to say how accurate is the estimate of 
prevalence obtained. 

We can calculate the probabilities for Binomial Distribution by listing all 
the ways in which , say, 15 coins can fal l .  However, there are 2 15 = 32 768 
combinations of 1 5  coins, so this is not very practical . Instead , we find a 
formula for the probability in terms of the number of throws and the 
probability of a head . 

n = 10 ,  p = 0 .  167  
0 .  5 

JI 
� 0 .  4 ...... 
...... 

.c 0 .  J 
rd 
.c 
0 0 .  2 L a. 

0 .  1 

0 I I I I I I I I 
0 1 2 J 4 5 6 7 8 9 1 0  

Fig. 6.4 Binomial Distribution for the number of sixes shown in 10 throws of a 
die. 
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In general, we have n independent trials with the probability that a trial is a 
success being p. What is the probability of r successes? For any particular 
series of r successes, each with probability p, and n - r failures, each with 
probability (1 - p), the probability of the series happening by chance is 
p '( l - p)n - ', since the trials are independent and the multiplicative rule 
applies . The number of ways in which r things may be chosen from n things is 
n ! lr ! (n - r)! (see Appendix 6A. l ) .  Only one combination can happen at one 
time, so we have n ! lr! (n - r) ! mutually exclusive ways of having r successes, 
each with probability p '( l - p)n - r. The probability of having r successes is 
the sum of these : 

n !  
Prob(r successes) = p '( l - p)n - r 

r! (n - r) !  

Those who remember the binomial expansion i n  mathematics wi l l  see 
that this is one term of it ,  hence the name Binomial Distribution . The 
Binomial Distribution is the distribution followed by the number of suc
cesses in n independent trials when the probability of a trial being a success 
is p. 

Thus, if  the probability of surviving a particular disease is 0 .  9 and we have 
a sample of 20 patients, the number who survive will be from a Binomial 
Distribution with p = 0 . 9  and n = 20 . 

Hence, the probability that all survive (r = 20) i s :  

Prob(r = 20) == 
201 

x 0.920 x ( 1  - 0 .9)20 - 20 
20! (20 - 20) ! 

20! 
---- x 0 .920 x 0 . 1 °  
20 ! x O ! 

= 0.920 

= 0. 1 2  

(N.B.  O ! = 1 (Appendix 6A. l )  and anything t o  the power o f  zero i s  1 . ) 

Similarly, the probability that 1 9  survive is :  

20! Prob(r = 1 9) = x 0.919 x 0. 1 20 - 19 
1 9 ! (20 - 1 9) !  

20! 
---- x 0.919 x O. l 1  
1 9 !  x 1 ! 

= 20 x 0.919 x 0. 1 

= 0.27 

Hence the probability that no more than one patient dies is the sum of these, 
0.39 .  We can use this distribution as a model whenever we have a series of 
trials with two possible outcomes . If we treat a group of patients ,  the number 
who recover has a Binomial Distribution. If we measure the blood pressure of  
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a group of people, the number classified as hypertensive has a Binomial 
Distribution. 

6.5. Mean and variance 

The number of different probabilities in a Binomial Distribution can be very 
large and unwieldy. When n is large, we usually need to summarize these 
probabilities in some way. Just as a frequency distribution can be described 
by its mean and variance, so can a probability distribution and its associated 
random variable .  

The mean is the average value of the random variable in the long run. It is 
also called the expected value or expectation and the expectation of a random 
variable X is usually denoted by E(X). 

For example, consider the number of heads in tosses of two coins .  We get 0 
heads in 1 /4 of pairs of coins, i . e .  with probability 1 /4. We get 1 head in 1 /2 
of pairs of coins, and two heads in 1 /4 of pairs. The average value we should 
get in the long run is found by multiplying each value by the proportion of 
pairs in which it occurs and adding: 

0 x 1 14 + 1 x 1 12 + 2 x 1 14 = 1 

I f  we kept on tossing pairs of coins, the average number of heads per pair 
would be 1 .  Thus for any random variable which takes discrete values the 
mean, expectation or expected value is found by summing each possible value 
multiplied by its probability. 

Note that the expected value of a random variable does not have to be a 
value that the random variable can actually take. For example, for the mean 
number of heads in throws of one coin we have either no heads or one head, 
each with probability half, and the expected value is 

0 x 1 /2 + I x 1 /2 = 1 12 

The number of heads must be 0 or 1 ,  but the expected value is 1 12 ,  the average 
which we would get in the long run .  

The variance of a random variable i s  the average squared difference from 
the mean. For the number of heads in two coin tosses, 0 is one unit from the 
mean and occurs for 1 /4 of pairs of coins, 1 is zero units from the mean and 
occurs for 1 12 of the pairs and 2 is one unit from the mean and occurs for I I 4 
of pairs, i . e .  with probability 1 /4. The variance is then found by squaring 
these differences, multiplying by the proportion of times the difference will 
occur (the probability) and adding: 

(0 - 1 )2 x 1 14 + ( 1 - 1 )2 x 1 /2 + (2 - 1)2 x 1 14 
= 1 2 x 1 14 + 02 x 1 /2 + 1 2 x 1 /4 

I 
2 
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We denote the variance of a random variable X by Var(X) .  In mathe
matical terms, 

Var(X) = E [(X - E(X)]2] = E(X2) - (E(X)]2 

Because the variance depends on the square of the variable, it is measured in 
different units from the variable itself. It is often convenient to use the square 
root of the variance, which we call the standard deviation .  Like the mean, this 
has the same units as the original variable. We often use the Greek letters µ ,  
pronounced 'mu ' ,  and a ,  pronounced 'sigma' , for the mean and standard 
deviation of a probability distribution. The variance is then a2 • 

The mean and variance of the distribution of a continuous variable, of 
which more in Chapter 7 ,  are defined in a similar way. Calculus is used to 
define them as integrals , but this need not concern us here . Essentially what 
happens is that the continuous scale is broken up into many very small 
intervals and the value of variable in that very small interval is multiplied by 
the probability of being in it , then these are added. 

6.6. Properties of means and variances 

When we use the mean and variance of probability distributions in statistical 
calculations, i t  is not the details of their formulae which we need to know, but 
some of their simple properties . The reasons for these properties are quite 
easy to see in a non-mathematical way. 

If we add a constant to a random variable, the new variable so created has a 
mean equal to that of the original variable plus the constant. Suppose our 
random variable is human height . We can add a constant to the height by 
measuring the heights of people standing on a box. The mean height of 
people plus box wil l  now be the mean height of the people plus the constant 
height of the box. However, the box will not alter the variability of the 
heights. The difference between the tallest and smallest , for example, will be 
unchanged . So the variance and standa.rd deviation will be unchanged. We 
can subtract a constant by asking the people to stand in a constant hole to be 
measured . This reduces the mean but leaves the variance unchanged as 
before. 

We multiply the random variable by a constant if we change our units of  
measurements, say from inches to  centimetres. We multiply each measure
ment by 2 . 54 .  This has the effect of multiplying the mean by the constant, 
2 . 54, and multiplying the standard deviation by the constant since it is in the 
same units as the observations. However, the variance is measured in squared 
units, and so is multiplied by the square of the constant. Division by a 
constant works in exactly the same way. 

Multiplication by a negative constant is r�ther more difficult to model .  The 
mean is multiplied by the constant as before, and the variance by the square 
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of the constant. The standard deviation, which was defined as the square root 
of the variance, is always positive. It is multiplied by the absolute value of the 
constant, i . e .  the constant without the negative sign. 

Another thing we often want to do is add two random variables. We can do 
this by measuring the height of people standing on boxes of random height . 
We see that the mean height is increased. In fact the mean height of people on 
boxes is the mean height of people + the mean height of the boxes . The varia
bility of the heights is also increased . This is because some short people will 
find themselves on small boxes, and some tall people will find themselves on 
large boxes . To be precise, the variance of the sum of two independent 
random variables is the sum of their variances. 

If the people do not choose their boxes at random, i .e. the two variables are 
not independent, something different happens . Suppose they have decided to 
stand on the boxes not just at a statistician's whim but for a purpose. They 
wish to change a light bulb, and so must reach a required height . Now the 
short people must pick large boxes, whereas tall people can make do with 
small ones . The result is a reduction in variability to almost nothing. On the 
other hand, if we told the tallest people to find the larg'est boxes and the 
shortest to find the smallest boxes, the variability would be increased . The 
mean of the sum remains the''s·um of the means, but the variance of the sum is 
not the sum of the variances . I ndependence is an important condition . 

We can model the difference between two random variables by measuring 
the heights above ground level of our people standing in holes of random 
depth. The mean height above ground is the mean height of the people minus 
the mean depth of the hole. The variability is increased, because some short 
people stand in deep holes and some tall people stand in shallow holes . I n  
fact , the variance of  the difference between two random variables is the sum 
of their variances . The variables must be independent . If the variables are not 
independent, the additivity of the variances breaks down, as it did for the sum 
of two random variables . When the people try to hide in the holes, and so 
must find a hole deep enough to hold them, the variability is again reduced. 

The effects of multiplying two random variables and of dividing one by 
another are much more complicated. Fortunately we very rarely need to do 
this. 

We can now find the mean and variance of the Binomial Distribution with 
parameters n andp. First consider n = I .  Then the probability distribution is :  

The mean is therefore 

value probability 
0 I - p  

p 

0 x ( I  - p) + 1 x p = p 
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The variance is 

(0 - p)2 x ( I  - p) + ( I  - p)2 x p = p2(1 - p) + p( I  - p)2 
= p( I - p)(p + I - p) 
= p( I - p) 

Now, the Binomial variable with parameters n and p is the sum of n 
independent Binomial variables with parameters I and p. So its mean is the 
sum of n means all equal to p, and its variance is the sum of n variances all 
equal to p( I - p) . 

Hence the Binomial Distribution has : 

mean = np 
variance = np( I  - p) 

As we shall see later, these are often more useful than the Binomial 
probability formula. 

The properties of means and variances of random variables enable us to 
find a formal solution to the problem of degrees of freedom for the sample 
variance discussed in Chapter 4. We want an estimate of variance whose 
expected value is the population variance. The expected value of l:(x; - x)2 
can be shown to be (n - I )  Var(x) (Appendix 6A .2) and hence we divide by 
(n - I ) , not n ,  to get our estimate of variance. 

6. 7. The Poisson Distribution 

The Binomial Distribution is one of many probability distributions which are 
used in statistics . It is a discrete distribution, that is it can take only a set of 
separate possible values , and is the discrete distribution most commonly 
encountered in medical applications . One other discrete distribution is worth 
discussing at this point, the Poisson Distribution . Although, like the 
Binomial , the Poisson Distribution arises from a simple probability model, 
the mathematics involved is more complicated and we shall omit it . 

Suppose events happen randomly and independently in time with a 
constant rate, then the number of events which happen in a fixed time interval 
follows the Poisson Distribution . This model can be used to examine and 
compare annual mortality rates, for example. Deaths from many causes can 
be regarded as happening randomly and independently in the population and 
the Poisson Distribution enables us to say how far apart we would expect two 
mortality rates to be by chance. 

The mean of the Poisson Distribution for the number of e •ents per unit 
time is simply the rate, as might be expected . The variance of the Poisson 
Distribution also happens to be equal to the rate, so this distribution is very 
easy to use. The individual probability for r events happening in unit t ime 
with rate m is e - mm '/r! , where e = 2 . 7 1 8  . . . , the mathematical constant . 
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Fig. 6.5 Poisson Distributions with four different means. 

However, there is seldom any need to use individual probabilities of this 
distribution . Its mean and variance suffice. 

Figure 6 . 5  shows the Poisson Distribution for four different means. You 
will see that as the mean increases the Poisson Distribution looks rather like 
the Binomial Distribution in Fig. 6 . 3 .  We shall discuss this similarity further 
in the next chapter. 

Appendix 6A 

6A. 1 .  Combinations 

For those who never knew, or have forgotten, the theory of combinations, it 
goes like this . 

First ,  we look at the number of permutations, i .e . ways of  arranging a set 
of objects . Suppose we have n objects. How many ways can we order them? 
The first object can be chosen n ways, i . e .  any object . Then only (n - I )  
remain ,  so the second object can only be chosen (n - 1 )  ways . Hence, for 
each first object there are (n - 1 )  possible second o.bjects .  Hence, there are 
n x (n - 1 )  possible first and second permutations. There are now only 
(n - 2) choices for the third object, (n - 3) choices for the fourth , and so on, 
until there is only one choice for the last . Hence, there are n x (n - 1) x 
(n - 2) x . . .  x 2 x I permutations of n objects. We call this number the 
factorial of n and write it n !  
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Now we want to know how many ways there are of choosing r objects from 
n objects . Having made a choice of r objects, we can order those in r ! ways . 
We can also order the (n - r) not chosen, in (n - r) !  ways . So the objects can 
be ordered in r ! (n - r ! )  ways without altering the objects chosen. For 
example, say we choose the first two from three objects, A, B ,  and C .  Then if 
these are A and B,  two permutations give this choice, ABC and BAC. This is , 
of course, 2! x 1 ! = 2 permutations. 

Hence, each combination of r things accounts for r ! (n - r) !  of the n !  
permutations possible. Hence, there are n ! lr ! (n - r ) !  possible combina
tions. For example, consider the number of combinations of two objects out 
of three , say A, B,  and C. The possible choices are AB, AC, and BC. There is 
no other possibility. 

We have n = 3 and r = 2, so 

n !  
r ! (n - r ) !  

So  the formula works .  

3 !  
2 ! (3 - 2) ! 
3 x 2 x 1 
2 x 1 x 1 

= 3 

Sometimes in using this formula we come across r = 0 or r = n, giving O !  in 
the formula. This cannot be defined in the way we have chosen, but we can 
calculate its only possible value. Because there is only one way of choosing n 
objects from n, we have 

So O! = 1 .  

n !  
---- = 1 
n ! (n - n) ! 

n !  --- = 1 
n !  x O!  

_1 = 1 
O !  

6A. 2 .  Expected value of a sum of squares 

The properties of means and variances described in Section 6 .6 can be used to 
answer the question raised in Chapter 4 about the divisor in the variance of a 
sample. We ask why the variance from a sample is 

s2 = 

and not 

1 
- 2 -- :E(x; - x) 

n - 1 

__!_ :E(x; - .f)2 
n 
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We shall be concerned with the general properties of samples of size n ,  so 
we shall treat n as a constant and X; and x as random variables . We shall 
suppose X; has mean µ and variance a2. 

We want the estimate of variance to be independent of the sample size , so 
we want the expected value of the sample variance to be a2. 

The expected value of the sum of squares is 

E[L(X; - x)2) = E[(Lx/) - n.X2) 
= E(Lx/) - E(nx2) 
= E(Lx/) - nE(x2) 

(See Appendix 4A.2) 

because the expected value of the difference is the difference between the 
expected values (Section 6.6) and n is a constant . Now, the population vari
ance a2 is the average squared distance from the population mean µ,  so 

a2 = E[(x; - µ)2] 
= E(x/ - 2µx; + µ2) 
= E(x?) + E( - 2µx;) + E(µ2) 
= E(x/) - 2µE(x;) + µ1 

because µ is a constant .  
Because E(x;) = µ ,  we have 

and so we find 

and so 

a2 = E(x/) - 2µ2 + µ2  
= E(x/) - µ2  

E(x/) = a2 + µ2  

being the sum of n numbers , all of which are a2  + µ 2 .  
We now find the value of E(x2) . 

Just as 

so 

Now 

E(x/) = a2 + µ2 
= Var(x;) + [E(x; )]2 

E(x2) = Var(x) + [E(x)]2 

- 1 
x = - LX; 

n 
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Hence 

Probability 

E (x) = E ( � L X; ) 
I 

= - E(LX;) 
n 

= __!__ LE(x;) 
n 
I = - Lµ 
n 
I = - nµ 
n 

= µ 

Var(x) = Var ( � LX; ) 
I 

= -
2 

Var(LX;)  
n 
I 

= -
2 

L Var(x; )  
n 

because I In is a constant, the X; are independent and hence the variance of  the 
sum is the sum of the variances. Hence 

We saw that 

So 

I 
Var(x) = - Lu2 

n 2 
l 

= - nu2 
n 2 
u2 

n 

E(x2) = Var(x) + [E(x)]2 
u2 

= -- + µ2  
n 

E [L(X; - x)2] = LE(x/) - nE(x2) 

= n(u2 + µ2) - n ( � + µ2 ) 
= nu2 + nµ 2 - u2 - nµ 2  
= (n - l )u2 

So the expected value of the sum of squa res is (n - l )u2 and we must divide 
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the sum of  squares by (n - 1 ) ,  not n,  to obtain the best estimate of the 
variance, a2 • 

Exercise 6M 

(Each branch is either true or false.) 

1 .  The events A and B are mutually exclusive, so: 

(a) Prob(A or B) = Prob(A) + Prob(B); 

(b) Prob(A and B) = O; 

(c) Prob(A and B) = Prob(A) Prob(B); 

(d) Prob(A) = Prob(B) ; 

(e) Prob(A) + Prob(B) = 1 .  

2. The probability of a woman aged 50 having condition X is 0.20 and the 

probability of her having condition Y is 0.05. These probabilities are 

independent: 

(a) The probability of her having both conditions is 0 .0 1 . 

(b) The probability of her having both conditions is 0 .25 . 

(c) The probability of her having either X, or Y ,  or both is 0 .24 . 

(d) I f  she has condition X,  the probability of her having Y also is 0 .0 1 . 

(e) I f  she has condition X ,  the probability of her having Y also is 0 .20. 

3. The following variables follow a Binomial Distribution: 

(a) number of sixes in 20 throws of a die; 

(b) human weight; 
(c) number of a random sample of patients who respond to a treatment; 

(d) number of red cells in 1 ml of blood; 

(e) proportion of hypertensives in a random sample of adult men. 

4. If a coin is spun twice in succession: 

(a) the expected number of tails is 1 . 5 ;  

(b) the probability of two tails is 0.25 ; 

(c) the number of tails follows a Binomial Distribution; 

(d) the probab ility of at least one tail is 0 .5 ;  

(e) the distribution of the number of tails is symmetrical . 
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5. If X is a random variable, mean µ. and variance a2: 

(a) E (X + 2) = µ.;  
(b) Var(X + 2) = a2;  

(c) E(2X) = 2µ; 

(d) Var(2X) = 2a2; 

(e) Var(X/2) = a2/4.  

6. If X and Y are independent random variables: 

(a) Var(X + Y) = Var(X) + Var ( Y) ;  

(b) E (X + Y )  = E (X) + E ( Y) ;  

(c) E (X - Y )  = E (X) - E ( Y) ;  

(d) Var(X - Y )  = Var(X) - Var( Y) ;  

(e) Var( - X) = - Var(X) .  

Exercise 6E 

In this exercise we shall apply some of the basic laws of probability to a 
practical exercise. The data are based on a life table. (We shall say more about 
these in Chapter 1 6 . )  Table 6E. l shows the number of men, from a group 
numbering 1000 at birth , who we would expect to be alive at different ages . 
Thus, for example, after 1 0  years, we see that 959 survive and so 4 1  have died, 

Table 6E.1 .  Number of men remaining alive at ten-year intervals (from English 
Life Table No. 1 1 ,  Males) 

Age in years Number surviving 
(x) Ux) 

0 1000 
I O  959 
20 952 
30 938 
40 920 
50 876 
60 758 
70 524 
80 21 I 
90 22 

J OO 0 



Exercise BE 1 1 1  

at 20 years 952 survive and so 48 have died, 4 1  i n  age range 0-9 and 7 i n  age 
range 1 0- 1 9. 

I .  What is the probability that an individual chosen at random wiJI survive 
to age 10? 

2 .  What is the probability that this individual will die before age 1 0? 
Which property of probability does this depend on? 

3 .  What are the probabilities that the individual wiJI survive to ages 1 0, 20, 
30, 40, 50, 60, 70, 80, 90, 1 00? Is  this set of probabilities a probability 
distribution? 

4 .  What is the probability that an individual aged 60 years survives to age 
70? 

5 .  What is the probability that two men aged 60 will both survive to age 
70? Which property of probability is used here? 

6. I f  we had 1 00 individuals aged 60, how many would we expect to attain 
age 70? 

7. What is the probability that a man dies in his second decade? (Use the 
fact that Prob(death in 2nd) + Prob(survives to 3rd) = Prob(survives to 
2nd) . )  

8 .  What i s  the probability that a man dies in his l st, 2nd, 3rd, 4th ,  5th, 6th ,  
7th, 8th, 9th , 1 0th decades. This i s  a probability distribution - why? Sketch 
the distribution. 

9 .  We can assume that the average number of years lived in the decade of 
death is 5 .  Thus , those who die in the 2nd decade wil l  have an average l i fespan 
of 15 years . The probability of dying in the 2nd decade is 0.007, i . e .  a propor
tion 0.007 of men have a mean lifetime of 1 5  years . What is the mean l ifetime 
of all men? This is the expectation of life at birth . 



7.  The Normal Distribution 

7 . 1 . Probability distributions for continuous variables 

When we derived the theory of probability in the discrete case, we were able 
to say what the probability was of a random variable taking a particular 
value. As the number of possible values increases, the probability of a 
particular value decreases. For example, in the Binomial Distribution with 
p = 0.5 and n = 2, the most likely value, 1 ,  has probability 0 . 5 .  In the 
Binomial Distribution with p = 0.5 and n = 1 5 ,  the most likely values , 7 and 
8, have probability 0.2, and when n = 1 00 the most likely value has pro
bability 0.08. In such cases we are usually more i nterested in the probability 
of a range of values than one particular value. 

When we come to continuous variables, such as height, the set of possible 
values is infinite. As we have already noted in Section 6. 1 ,  the probability of  
any particular value is zero. What we are interested in i s  the probability of the 
random variable taking values between certain l imits rather than particular 
values . I f  the proportion of individuals in the population whose values are 
between the limits is p, and we choose an individual at random,  the pro
bability of choosing an individual who lies between the limits is equal to p .  
This comes from our definition of  probability, the choice of each individual 
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Fig. 7.1 Histogram of the frequency distribution of a random variable. 
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being equally likely. The problem is finding and giving a value to this 
proportion. 

We can approach this from frequency distributions . In  a frequency dis
tribution we observe how many values in a particular sample fall within 
certain limits (Chapter 4). We represent this as a histogram, as in Fig. 7 . 1 .  
The heights of the rectangles, representing frequency, depend on the total 
number in the sample and the size of the intervals as well as the shape of the 
distributions. To adjust for this we can develop the idea of relative or propor
tional frequency. Instead of considering the number of individuals falling 
within the interval, we find the proportion of the sample who fall within the 
interval . This is then the relative frequency, and is not affected by the size of 
the sample (Fig . 7 .2) .  Here the heights of the rectangles represent the propor
tion of observations falling within certain limits .  These heights now depend 
only on the shape of the distribution and the size of the intervals . 
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Fig. 7.2 Histogram showing relative frequency. 

We can adjust for this also . To do this we move from relative frequency to 
1;eluJ.i.ve frequency density. This is the proportion of observations in the 
interval per unit of X. Thus, when the interval size is 5, as above, the relative 
frequency density is the relative frequency divided by 5 (Fig. 7 . 3 ) .  We did this 
in Chapter 4, when considering histograms for distributions where the class 
intervals were unequal. 

The relative frequency is now represented by the number of units of X 
multiplied by the density, which gives the area of the rectangle. Thus , the 
relative frequency between any two points can be found from the area under 
the histogram between the points . For example, to estimate the relative 
frequency between 10 and 20 we have the density from 10 to 1 5  as 0.05 and 
between 1 5  and 20 as 0.03 . Hence the relative frequency is 

0.05 x ( 1 5  - 10) + 0.03 x (20 - 15 )  = 0.25 + 0. 1 5  = 0.40. 
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Fig. 7.4 The effect on a frequency distribution of increasing sample size. 

As we take larger and larger samples, _we can take smaller intervals . We get 
a smoother-looking histogram, as in Fig. 7.4, and as we take larger and larger 
samples and so smaller and smaller intervals, we get a shape very close to a 
smooth curve (Fig . 7 .5 ) .  As the sample size approaches that of the popula
tion, which we can assume to be very large, this curve becomes the relative 
frequency density of the whole population . Thus, from this limiting curve we 
can find the proportion of observations between any two limits by finding the 
area under the curve, as indicated in Fig. 7 . 5 .  

I f  we know the equation of  this curve, we  can find the area under it .  
(Mathematically we do this by integration, but we do not need to know how 
to integrate to use or to understand practical statistics - all the integrals we 
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need have been done and tabulated . )  Now, i f  we choose an individual at 
random, the probability that X lies between given limits is equal to the 
proportion of individuals who fall between these limits . Hence, the relative 
frequency distribution for the whole population gives us the probability 
distribution of the variable. We call this curve the probability density 
junction .  To find the probability of the variable lying between any given 
limits, we simply find the area under the curve between the limits. 

These curves have a number of general properties . For example, the total 
area under the curve must be one, since this is the total probability of all 
possible events . As was noted in Section 6 .5 ,  continuous random variables 
have means, variances and standard deviations defined in a similar way to 
those for discrete random variables and possessing the same properties . The 
mean will be somewhere near the middle of the curve and most of the area 
under the curve will be between the mean minus two standard deviations and 
the mean plus two standard deviations (Fig. 7 .6) .  

The precise shape of the curve is more difficult to ascertain. There are 
many possible probability functions and some of these can be shown to ofit 
simple probability models, as were the Binomial and Poisson Distributions. 
However, most continuous variables with which we have to deal , such as 
height , blood pressure, serum cholesterol, do not arise from simple, known 
probability situations. As a result, we do not know the probability distribu
tion for these measurements on theoretical grounds . As we shall see, we can 
often find a standard distribution whose mathematical properties are known, 
which fits observed data well and which enables us to draw conclusions about 
them . Further, as sample size increases the distribution of certain statistics 
calculated from the data, such as the mean, become independent of the 
distribution of the observations themselves and follow one particular 
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distribution form, the Normal Distribution. It is on this fact that most statis
tical analysis depends. We shall devote the remainder of this chapter to a 
study of this distribution . 

7.2.  The Normal Distribution 

The Normal Distribution, also known as the Gaussian Distribution, may be 
regarded as the fundamental probability distribution of statistics . The word 
'normal' here is not used in its usual meaning of 'ordinary or common' ,  or its 
medical meaning of 'not diseased' .  The usage relates to its older meaning of 
'conforming to a rule or pattern' ,  and we shall see, the Normal Distribution is 
the form to which the Binomial Distribution tends as its parameter n 

increases. There is no implication that most variables are Normally 
distributed . 

We shall start by considering the Binomial Distribution as n increases . 
Take, for example, the Binomial Distribution withp = 0 . 3 .  Figure 7.7 shows 
this distribution for six different values of n. When n is I or 2, the shape of the 
distribution is very skew and 0 is the most likely value . As n increases, the 
shape of the distribution changes . The most extreme possible values become 
less likely and the distribution becomes more symmetrical . When n = 1 00, 
the distribution is very close to symmetry. This happens whatever the value of 
p. The position of the distribution along the horizontal axis ,  and its spread, 
are still determined by p, but the shape is not . A smooth curve can be drawn 
which goes very close to these points . This is the Normal curve, the curve of 
continuous distribution which the Binomial Distribution approaches as n 
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Fig. 7.7 Binomial Distribution for p = 0.3 and six different values of n.  

increases . Any Binomial Distribution may be approximated by the Normal 
Distribution of the same mean and variance provided n is large enough. 
Figure 7 .8 shows the Binomial Distributions of Fig. 7 .7  with the cor
responding Normal curves . From n = 10 onwards the two distributions are 
very close. 

Generally, if both np and n(l - p) exceed 5 the approximation of the 
Binomial to the Normal Distribution is quite good enough for most practical 
purposes . See Section 8 .4 for an Cl;PPlication. The Poisson Distribution has 
the same property, as Fig. 6.4 suggests. 

The Binomial variable may be regarded as the sum of n independent iden
tically distributed random variables, each being the outcome of one trial and 
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Fig. 7.8 Binomial Distributions for p = 0.3 and six different values of n,  with 
corresponding normal curves. 

taking value 1 with probability p. In general, if we have any series of indepen
dent, identically distributed random variables, then their sum tends to a 
Normal Distribution as the number of variables increases. This is known as 
the central limit theorem. As most sets of measurements are observations of 
such a series of random variables, this is a very important property. From it , 
we can deduce that the sum or mean of any large series of independent obser
vations follows a Normal Distribution. 

We can see this , for example, from the Uniform or Rectangular Distribu
tion . This is the distribution where all values between two limits , say 0 and 1 ,  
are equally likely and no other values are possible. Observations from this 
arise if  we take random digits from a table of random numbers such as Table 
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2 . 3 ,  and form numbers b y  a decimal point followed by  a string o f  such digits . 
On a microcomputer, this is usually the distribution produced by the 
RND(X) function in  the BASIC language. Figure 7.9 shows the histogram for 
the frequency distribution of 500 observations from the Uniform Distribu
tion between 0 and 1 .  It is quite different from the Normal Distribution .  Now 
suppose we create a new variable by taking two Uniform variables and adding 
them. The histogram for 500 observations of this is also shown in Fig. 7 .9 .  
The shape of the distribution of the sum of two is quite different to the shape 
of the Uniform Distribution .  The sum is unlikely to be close to either 
extreme, and observations are concentrated in the middle near the expected 
value. The reason for this is that to obtain a low sum, both the Uniform 
variables forming i t  must be low; to make a high sum both must be high . But 
we get a sum near the middle if  the first is high and the second low, or the first 
is low and second high, or both first and second are moderate. The distribu
tion of the sum of two is much closer to the Normal than is the Uniform 
Distribution itself. However, the abrupt cut off at 0 and at 2 is unlike the cor
responding Normal Distribution .  Figure 7 .9 also shows the result of adding 
four Uniform variables and six Uniform variables . The similarity to the 
Normal Distribution increases as the number added increases and for the sum 
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Fig. 7.9 Sums of observations from a Uniform Distribution. 
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of six the correspondence is so close that the distributions could not easily be 
told apart .  

The approximation of the Binomial to the Normal Distribution is a special 
case of the central limit theorem. The Poisson Distribution is another. If we 
take a set of Poisson variables with the same rate and add them, we will get a 
variable which is the number of random events in a longer time interval (the 
sum of the intervals for the individual variables) and which is therefore a 
Poisson Distribution with increased mean. As it is .the sum of a set of indepen
dent , identically distributed random variables it will tend towards the Normal 
as the mean increases . Hence as the mean increases the Poisson Distribution 
'becomes approximately Normal. For most practical purposes this is when the 
mean exceeds I O .  The similarity between the Poisson and the Binomial noted 
in Section 6. 7 is a part of a more general convergence shown by many similar 
distributions. 

7.3. Properties of the Normal Distribution 

In its simplest form the equation of the Normal curve, called the Standard 
Normal Distribution, is 

I ( -

2
xi ) y = -- exp 

&" 

where 7r is the usual mathematical constant. The medical reader can be 
reassured that we do not need to use this forbidding formula in practice. 
The Standard Normal Distribution has a mean of 0, a standard deviation of l 
and a shape as shown in Fig . 7 .  I 0. The curve is symmetrical about the mean 
and often described as 'bell-shaped' .  We can note that most of the area, i . e .  
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Fig. 7.10 Standard Normal Distribution. 
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Table 7.1. The Normal Distribution 

x P (x )  x P(x) x P(x )  

- 3 .0 0.00 1 - 1 .0 0. 1 59 1 .0 0 .84 1 
-2.9 0.002 - 0 .9 0 . 1 84 I .  I 0. 864 
- 2 . 8  0 .003 - 0 . 8  0 . 2 1 2  1 .2 0.885 
- 2 . 7  0.003 - 0.7  0 .242 1 . 3 0 .903 
- 2 .6 0.005 - 0.6 0 .274 1 .4 0.9 1 9  
- 2 .5 0.006 - 0.5 0. 307 1 .5 0.933 
- 2 .4 0 .008 - 0.4 0.345 1 .6 0.945 
- 2 . 3  0 .0 1 1 - 0.3  0.384 I .  7 0.955 
- 2.2 0.0 1 4  - 0.2 0.42 1 1 . 8 0 .964 
- 2 . 1 0 .0 1 8  - 0 . 1 0.450 1 .9 0.97 1 
- 2 .0 0 .023 0.0 0 .500 2.0 0.977 
- 1 .9 0 .029 0 . 1 0.540 2 . 1 0.982 
- 1 . 8  0 .036 0.2 0 .579 2.2 0.986 
- 1 . 7 0 .045 0.3 0 . 6 1 6  2 . 3  0.989 
- 1 .6 0 .055 0.4 0 .655 2.4 0.992 
- 1 .5 0 .067 0.5 0.69 1 2 .5 0.994 
- 1 .4 0.08 1 0.6 0 .726 2.6 0.995 
- 1 . 3 0 .097 0 . 7  0.758 2 . 7  0 . 997 
- 1 .2 0 . 1 55 0 .8  0.788 2 . 8  0 .997 
- I . I  0. 1 36 0.9 0.8 1 6  2.9 0.998 
- : . 0  0 . 1 59 1 .0 0 .84 1  3 . 0  0.999 

The table shows the probabi l i ty,  P, of a Normal variable, mean 0 
and variance I being less than x. 

the probability, is between - I and + I , the large majority between - 2 and 
+ 2, and almost all between - 3 and + 3 .  

Although the Normal curve has many remarkable properties , i t  has one 
rather awkward one: it cannot be integrated . In other words ,  there is no 
simple formula for the probability of a Normally Distributed random 
variable lying between given limits . The areas under the curve can be found 
numerically, however, and these have been calculated and tabulated . 

This mathematical intractability is shown by most of the probability 
distributions used in statistics, and many sets of tables are available, from a 
short set of those most frequently needed (e .g .  Lindley and Miller 1 955) to the 
two-volume hard-cover Biometrika tables (Pearson and Hartley 1 969, 1 972) 
which has 69 tables, many of which occupy over ten pages each. 

Table 7 . 1  shows the area under the Normal curve for different values of the 
Normal Distribution. To be more precise, for a value, x, the table shows the 
area under the curve to the left of x, i .e .  from minus infinity to x (Fig. 7 . 1 1 ) .  

Note that half this table i s  not strictly necessary. We only need the half for 
positive x as P( - x ) + P(x) = 1 .  This arises from the symmetry of the 
distribution.  To find the probability of x lying between two values a and b, 

where b > a, we find P(b) - P(a ) .  These formulae are examples of the addi
tive law of probability. 
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Fig. 7.11 One-sided percentage point (5 per cent) of the Standard Normal 
Distribution. 

Table 7 . 1  only gives a few values of x, and much more extensive ones are 
available (Lindley and Miller 1 955 ;  Pearson and Hartley 1 969). These values 
will be quite sufficient for our purposes . 

There is another way of tabulating this distribution, using what is called 
percentage point . The one-sided p percentage point of a distribution is the 
value, x, such that there is a probability, p per cent , of an observation from 
that distribution being greater than or equal to x (Fig. 7 . 1 1 ) .  The two-sided p 
percentage point is the value, x, such that there is a probability, p per cent, of  
an observation being greater than or  equal to  x or less than or  equal to - x  
(Fig . 7 . 1 2) .  Table 7 . 2  shows both one sided and two sided percentage points 
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Fig. 7.12 Two-sided percentage point (5 per cent) of the Standard Normal 
Distribution. 
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Table 7 .2 .  Percentage points of the Normal Distribution 

One-sided Two-sided 
p x p x 

50 0.00 
25 0.67 50 0.67 
1 0  1 .28 
5 1 .64 10  1 .64 
2 .5  1 .96 5 1 .96 
1 2 .33 
0.5 2 .58 2 .58 
0 . 1 3 .09 
0.05 3 .29 0. 1 3 .29 

1 2 3  

for the Normal Distribution . The probability is quoted as  a percentage 
because when we use percentage points we are usually concerned with rather 
small probabilities, such as 0.05 or 0.01 , and use of the percentage form, 
making them 5 per cent and I per cent, cuts ouflhe leading zero. 

So far we have examined the Normal Distribution with mean 0 and 
standard deviation I .  If we add a constant µ to a Standard Normal variable, 
we get a new variable which has mean µ (see 6 .5) .  Figure 7. I 3 shows the 

\ � / 

Normal Distribution with mean 0 and the distribution obtained by adding I 
to i t  together with their two-sided 5 per cent points . The curves appear 
identical apart from a shift along the axis .  On the curve with mean 0 nearly all 
the probability is between - 3 and + 3 .  For the curve with mean I i t  is 
between - 2 and + 4, i . e. between the mean - 3 and the mean + 3. The pro
bability of being a given number of units from the mean is the same for both 
distributions, as is also shown by the 5 per cent points . 
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Fig. 7.13 Normal Distributions with different means, showing two-sided 5 per 
cent points. 
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Fig. 7.14 Normal Distributions with different variances, showing two-sided 5 
per cent points. 

If we take a Standard Normal variable, with standard deviation 1 ,  and 
multiply by a constant a we get a new variable which has standard deviation a. 

Figure 7 . 1 4 shows the Normal Distribution with mean 0 and standard devia
tion 1 and the distribution obtained by multiplying by 2. The curves do not 
appear identical. For the distribution with standard deviation 2, nearly all the 
probability is between - 6 and + 6, a much wider interval than the - 3 and 
+ 3  for the standard distribution . The values - 6  and + 6  are - 3  and + 3  
standard deviations . We can seethat the probability of being a given number 
of standard deviations from the mean is the same for both distributions . This 
is also seen from the 5 per cent points, which represent the mean plus or minus 
1 .96 standard deviations in each case. 

In fact, if we add µ to a Standard Normal variable and multiply by a, we get 
a Normal Distribution of mean, µ, and standard deviation, a. Tables 7. I and 
7 .2  apply to it directly, if we denote by x the number of standard deviations 
above the mean, rather than the numerical value of the variable. Thus, for 
example, the upper 2 .5  per cent point of a Normal Distribution with mean I 0 
and standard deviation 5 is found by I O  + 5 x 1 .96 = 1 9 .8 , the value 1 .96 
being found from Table 7 .2 .  

This property of the Normal Distribution, that multiplying or adding 
constants still gives a Normal Distribution, is not as obvious as i t  might seem . 
The Binomial does not have it , for example. Take a Binomial variable with 
n = 3, possible values 0, I ,  2, 3, and multiply by 0 .5 .  The pos ible values are 
now 0, 0 .5 ,  I ,  1 . 5 .  Try putting these into the Binomial probability formula, 
and you will soon have problems with the factorial of 1 . 5 .  

We have seen that adding a constant t o  a Normally distributed variable 
gives another Normally distributed variable . If we add two Normally 
distributed variables together, even with different means and variances, the 
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sum is Normally distributed. The difference between two Normally 
distributed variables is also Normally distributed . 

7.4. Variables which are themselves Normally distributed 

So far we have discussed the Normal Distribution as it arises from sampling 
as the sum or limit of other distributions. However, many naturally occurring 
variables, such as human height , appear to follow a Normal Distribution very 
closely. We might expect this to happen if  the variable were the result of 
adding variation from a number of different sources . The sort of process 
shown by the central limit theorem may well produce a result close to 
Normal . Figure 7 . 1 5  shows the distribution of height in a sample of pregnant 
women, and the corresponding Normal curve. The fit to the Normal curve is 
very good. 
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Fig. 7.15 Distribution of height in a sample of pregnant women. 

If the variable we measure is the result of multiplying several different 
sources of variation we would not expect the result to be Normal from the 
properties discussed in Section 7 . 3 ,  which were all based on addition of 
variables. However, i f  we take the log transformation of such a variable (see 
Appendix SA) we would then get a new variable which is the sum of several 
different sources of variation and which may well have a Normal Distribu
tion . This process often happens with quantities which are part of metabolic 
pathways, the rate at which reaction can take place depending on the con
centrations of other compounds . Many measurements of blood constituents 
exhibit this, for example. Figure 7 . 1 6 shows the distribution of serum 
triglyceride measured in cord blood for 282 babies . The distribution is highly 
skewed and quite unlike the Normal curve. However, when we take the log 
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Fig. 7.16 Serum triglyceride in cord blood for 282 babies. 

transformation of the triglyceride concentration, we have a remarkably good 
fit to the Normal Distribution (Fig. 7 . 1 7). If the logarithm of a random 
variable follows a Normal Distribution, the random variable itself follows a 
Lognormal Distribution. 

7.5. Assessing the fit of the Normal Distribution 

We often want to decide whether a sample appears Normally distributed. 
There are many ways of testing this and of estimating the deviation from the 
Normal , but most are only suited to fairly large samples . With a large sample 
we can inspect a histogram to see whether it looks like a Normal curve . The 
easiest way with a small sample is the Normal plot. This is a graphical 
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method, which can b e  done using ordinary graph paper and Table 7 . 1  (or a 
fuller version) , with specially printed Normal probability paper , or using a 
computer . Any good general statistical package will give Normal plots; i f  it 
doesn't then it isn't a good package. 

The Normal plot is a plot of the cumulative frequency distribution for the 
data against the cumulative frequency distribution for the Normal 
Distribution.  To construct a Normal plot we order the data from lowest to 
highest. We then estimate for each observation the probability that a number 
from the distribution followed by the data will have a value below that 
observation . We can say that for n points there are (n + 1) different sections 
of the scale, and (n - 1 )  intervals between adjacent points and those parts of 
the scale below the lowest and above the highest. The probability of a number 
from this distribution falling between any adjacent pair of observations will 
be l ln . The probability of a number from the distribution falling below the 
lowest observation is tf n and the probability of falling above the highest 
observation is also tf n. Note that the sum of all these probabilities is 1 .0, as 
the events are mutually exclusive and include all possibilities . The probability 
of being below the lowest observation is tf n, of being below the second is 
l tfn, and below the ith is (i - ±)In . There are other methods, but this is the 
simplest . 

We then find from Table 7 . 1 the values of x which correspond to 
P(x) = ±In, I ±ln, etc . For 5 points, for example, we have P(x) = 0. 1 ,  0 . 3 ,  
0 .5 ,  0 .7 ,  0 .9 and x = - 1 . 3 , - 0 . 5 , 0, 0 .5 ,  1 . 3 .  These are the points of the 
Standard Normal Distribution which correspond to the observed data. Now, 
if the observed data come from a Normal Distribution of mean µ and 
variance a2, the observed point should equal ax + µ, where x is the 
corresponding point of the Standard Normal Distribution. If we plot the 
Standard Normal points against the observed values we should get something 
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close to a straight line. I f  the data are not from a Normal Distribution we shall 
get a curve of some sort. Figure 7 . 1 8 shows the distribution of peak 
expiratory flow rate (PEFR) in a sample of female medical students, and 
Fig. 7 . 1 9  shows the Normal plot . The line is quite straight and it would 
certainly be reasonable to use a Normal Distribution in the analysis of these 
data. In contrast, Fig. 7 . 20 shows some data obtained in a geographical study 
of the soft tissue tumour Kaposi's sarcoma (Bland et al. 1 977) . This distribu
tion may not result from either a simple additive or simple multiplicative 
process, and so there is no reason to assume that either the Normal or 
Lognormal Distributions will apply. We can see that this distribution is not 
Normal . The Normal plot, Fig. 7 .2 1 , shows a very wavy line. 
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The Normal plot method can be used to investigate the Normal assumption 
in very small samples and is a very useful check when using methods such as 
the t Distribution methods described in Chapter 10 .  

Appendix 7A 

The Chi-squared and Student' s  t Distributions 

Less mathematically inclined readers can skip this Section, but those who 
persevere should find that applications like chi-squared tests (Chapter 1 3) 
appear much more logical . Many probability distributions can be derived for 
functions of  Normal variables which arise in statistical analysis .  Three of 
these are particularly important : the Chi-squared , t and F Distributions. 
These have many applications, some of which we shall discuss in later 
chapters. 

The Chi-squared Distribution is defined as follows . Suppose U is a 
Standard Normal variable, so having mean 0 and variance I .  Then the 
variable formed by U2 follows the Chi-squared Distribution with I degree of 
freedom .  I f  we have n such independent Standard Normal variables , U1 , U2, 

. , Un then the variable defined by 

X2 = 2. U/ 

is defined to be the Chi-squared Distribution with n degrees of freedom .  The 
letter x is the Greek 'chi ' ,  pronounced 'ky' as in 'kite ' .  The distribution 
curves for several different numbers of degrees of freedom are shown in 
Fig. 7 .22 .  The mathematical description of this curve is rather complicated , 
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Fig. 7 .22 Some Chi-squared Distributions. 

but we do not need to go into this. Table 1 3 . 3  gives some percentage points of 
the Chi-squared Distribution . 

Some properties of the Chi-squared Distribution are easy to deduce. As the 
distribution is the sum of n independent identically distributed random 
variables i t  tends to the Normal as n increases , following from the c-eotral 
limit theorem . The convergence is rather slow, however (Fig . .22), and the 
square root of chi-squared converges much more quickly. 

The expected value of U2 is of course the variance of U, the expected value 
of U being 0, and so E ( U2) = 1 .  The expected value of chi-squared with n 
degrees of freedom is thus n :  

E(x2) = £(2, U/) 

= 2,E( U/) 

= 2,1 
= n  

The square root of x 2 has mean approximately equal to ..J(n - i) and 
variance approximately I ·  

The Chi-squared Distribution has a very important property . Suppose we 
restrict our attention to a subset of possible outcomes for the n variables U1 , 

. . .  , Un . The subset will be defined by those values of U1 , • • •  , Un which 
satisfy the equation a1 U1 + a2 U2 + . . . + an Un = k, where a1 t a2 , an and k 

are constants . (This is called a linear constraint . )  Then under this restriction, 
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2, U/ follows a Chi-squared Distribut ion with (n  - 1 )  degrees of freedom. 
I f  there are m such constraints such that none of the equations can be cal
culated from the others, then we have a Chi-squared Distribution with 
(n - m) degrees of freedom . This is the source of the name 'degrees of 
freedom' . 

The proof of this is too complicated to give here , involving such mathe
matical abstractions as n-dimensional spheres, but its implications are very 
important . First , consider the sum of squares about the population mean µ of 
a sample of size n from a Normal Distribution, divided by a 2 •  The sum of 
squares l: [(x; - µ)la]2 will follow a Chi-squared Distribution with n degrees 
of freedom, as the (x; - µ)/a have mean 0 and variance I and they are 
independent . Now suppose we replace µ by an estimate calculated from the 
data, x. The variables are no longer independent; they must satisfy the 
relationship 2:(x; - x)I a = 0 and we now have (n - I )  degrees of freedom .  
Hence 

fol lows a Chi-squared Distribution with (n - 1 )  degrees of freedom. The sum 
of squares about the mean of any Normal sample with variance follows the 
distributions of a Chi-squared variable multiplied by a2• I t  therefore 
has expected value (n - I )a 2  and we divide by (n - I) to give the estimate 
of a2 •  

Thus,  provided the data are from a Normal Distribution , not only is the 
sample mean Normally distributed, but the sample variance is from a Chi
squared Distribution times a2• Furthermore, the sample variance and sample 
mean are independent if, and only if, the data are from a Normal 
Distribution . Because the square root of the Chi-squared Distribution 
converges quite rapidly to the Normal, the sample standard deviation is 
approximately Normally distributed for n > 20, provided the data themselves 
are from a Normal Distribution . 

We shall see further applications of this property when we deal with two 
sample t tests (Section IO. 3) and chi-squared tests (Chapter I 3 ) .  

Student ' s  t Distribution with n degrees of freedom is the distribution of 
Ul.Jx 211 /n, where U is a Standard Normal variable and x 211 is independent of 
it and has n degrees of freedom. We shall deal with it in Chapter I O .  

The F Distribution with m and n degrees of  freedom i s  the distribution of  
(x2,, .f m)l(x 211 /n) ,  the ratio of  two independent x 2  variables each divided by its 
degrees of freedom. This distribution is used for comparing variances . We 
shall not meet it in this book, but it is worth mentioning as it occurs often in 
slightly more advanced work . 
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Exercise 7M 

(Each branch is either true or false . )  

1 .  The Normal Distribution:  

(a) is also called the Gaussian Distribution; 

(b) is followed by many variables; 

(c) is so called because it is the one which is usually followed by naturally 
occurring quantities ; 

(d) is followed by all measurements made in healthy people; 

(e) is the distribution towards which the Poisson Distribution tends as its 
mean increases . 

2. The Standard Normal Distribution: 

(a) is skew to the left; 

(b) has mean = 1 .0; 

(c) has standard deviation = 0.0; 

(d) has variance = 1 .0; 

(e) has the median equal to the mean. 

3.  The PEFRs of a group of 1 1-year-old girls are Normally distributed with 

mean 300 I/min and a standard deviation 20 I/min. 

(a) About 95 per cent of the girls have PEFR between 260 and 340 I/min .  

(b) 50  per cent of the girls have PEFR above 300 I/min . 

(c) The girls have healthy lungs . 

(d) About 5 per cent of girls have PEFR below 260 I/min . 

(e) All the PEFRs must be less than 340 I/min.  

4.  T h e  mean of a large sample: 

(a) is always greater than the median; 

(b) is calculated from the formula 'Lx/n; 
(c) is from an approximately Normal Distribution; 

(d) increases as the sample size increases; 
(e) is always greater than the standard deviation . 
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5.  If  X and Y are independent variables which follow Standard Normal 

Distributions, a Normal Distribution is also followed by: 

(a) 5X; 

(b) X2; 

(c) X + 5 ;  
(d) X - Y; 

(e) X/Y. 

Exercise 7E 

In this exercise we shall return to the blood glucose data of exercise 4E and try 
to decide how well they conform to a Normal Distribution .  

1 .  From the  box and whisker plot and the histogram found in exercise 4E 
(see 4E solution if you have not tried exercise 4E) ,  do the blood glucose levels 
look l ike a Normal Distribution? 

2 .  Construct a normal plot for the data. This is quite easy as they are 
ordered already in the stem and leaf plot of exercise 4E. Find (i - ±)In for 
i = 1 to 40 and obtain the corresponding cumulative normal probabilities 
from Table 7 . 1 .  Now plot these probabilities against the corresponding 
blood gucose. 

3. Does the plot appear to give a straight line? Do the data follow a 
Normal Distribution? 



8.  Estimation, standard 
error, and confidence 
intervals 

8 . 1 .  Sampling distributions 

We have seen in Chapter 3 how samples are drawn from much larger popula
tions. Data are collected about the sample so that we can find out something 
about the population. One of the things we want to do is to estimate 
quantities such as disease prevalence, mean blood pressure, or mean 
exposure to a carcinogen. We also want to know by how much these estimates 
might vary from sample to sample. 

In Chapters 6 and 7 we saw how the theory of probability enables us to link 
random samples with the populations from which they are drawn. In this 
chapter we shall see how probability theory enables us to use samples to 
estimate quantities in populations, and to determine the precision of these 
estimates . First we shall consider what happens when we draw repeat samples 
from the same population. Table 8 . 1  shows a set of 100 random digits which 
we can use as the population for a sampling experiment .  The distribution of  
the numbers in  this population is shown in Fig . 8 . 1 .  The population mean i s  
4. 7 and the standard deviation i s  2 .9 .  

The sampling experiment is done by using a suitable random sampling 
method to draw repeated samples from the populat ion. In this case decimal 

Table 8.1. Population of 100 random 
digits for a sampling experiment 

9 l 0 7 5 6 9 5 8 8 
l 8 8 8 5 2 4 8 3 l 
2 8 l 8 5 8 4 0 l 9 
l 9 7 9 7 2 7 7 0 8 
7 0 2 8 8 7 2 5 4 I 
l 0 5 7 6 5 0 2 2 
6 5 5 7 4 l 7 3 3 
2 l 6 9 4 4 7 6 l 7 
I 6 3 8 0 5 7 4 8 6 
8 6 8 3 5 8 2 7 2 4 
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Fig. 8.1 Distribution of the population of Table 8 . 1 .  

1 3 5  

dice were a convenient method. A sample of size four was chosen ; 6, 4, 6, and 
1 .  The mean was calculated : 1 7  /4 = 4.25 . This was repeated to draw a second 
sample of four numbers: 7, 8, 1 ,  8. Their mean is 6.00 . This sampling 
procedure was done 20 times altogether, to give the samples and their means 
shown in Table 8 .2 .  

Table 8 . 2 .  Random samples drawn in  a sampling experiment 

Sample 6 7 7 I 5 5 4 7 2 8 
4 8 9 8 2 5 2 4 8 I 
6 I 2 8 9 7 7 0 7 2 

8 7 4 5 8 6 7 0 

Mean 4.25 6.00 6.25 5 .25 5 .25 6.25 4.75 3 .00 6.00 2 .75 

Sample 7 7 2 8 3 4 5 4 4 7 
8 3 5 0 7 8 5 3 5 4 
7 8 0 7 4 7 8 I 8 6 
2 7 8 7 8 7 3 6 2 3 

Mean 6 .00 6 .25 3 .75 5 . 50 5 .50 6.50 5 .25 3 .50 4.75 5 .00 

These samples means are not all the same. They show random variation. I f  
we were able to draw all the 3 92 1 225 possible samples and calculate their 
means ,  these means themselves would form a distribution .  Our 20 samples 
means are themselves a sample from this distribution.  The distribution of all 
possible sample means is called the sampling distribution of the mean. In 
general , the sampling distribution of any statistic is the distribution of the 
values of the statistic which would arise from all possible samples. 
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Fig. 8.2 Distribution of the population of Table 8 . 1  and of the sample of the 
means of Table 8.2 .  

8.2.  Standard error of a sample mean 

For the moment we shall consider the sampling distribution of the mean only. 
As our sample of twenty means is a random sample from it , we can use this to 
estimate some of the parameters of the distribution .  The twenty means have 
their own mean and standard deviation. The mean is 5 .  I and the standard 
deviation is I .  I .  Now the mean of the whole population is 4. 7, which is close 
to the mean of the samples . But the standard deviation of the population is 
2 .9 ,  which is considerably greater than that of the sample means. If we plot a 
histogram for the sample of means (Fig . 8 .2) we see that the centre of  the 
sampling distribution and the parent population distribution are the same, 
but the scatter of the sampling distribution is much less .  

Another sampling experiment , on a larger scale, wil l  illustrate this further. 
This time our parent distribution will be the Normal Distribution with mean 0 
and standard deviation I .  Figure 8 . 3  shows a computer simulation of  500 
observations from this distribution. Figure 8 . 3  also shows the distribution of 
means from 500 random samples of size four from this population, the 
sample size as in Fig. 8 .2 .  Figure 8 .3 also shows the distributions of 500 
means of samples of size ni!J.e and of size sixteen. In all four distributions the 
means are close to zero, the mean of the parent distribution . But the standard 
deviations are not the same. They are, in fact ,  approximately I (parent 
distribution); 1 /2 (means of 4), 1 /3 (means of 9) and 1 /4 (means of I 6) .  The 
relationship between the standard deviations of the parent distribution and 
of the sampling distribution of the mean is this: the sampling distribution of 
the mean has standard deviation al.Jn or .J(a2/n), when� a is the standard 
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Fig. 8.3 Samples of means from a Standard Normal variable. 

deviation of the parent distribution and n is the sample size. The mean of the 
sampling distribution is equal to the mean of the parent distribution . The 
actual , as opposed to simulated, distribution of the mean of four observa
tions from a Normal Distribution is shown in Fig. 8 .4 .  We can also see this 
mathematically, by a simple application of the properties of random 
variables as shown in Appendix 6A.2. 

The sample mean is an estimate of the population mean. The standard 
deviation of its sampling distribution is called the standard error of the 
estimate .  It provides a measure of how far from the true value the estimate is 
likely to be. In most kinds of estimates, the estimate is likely to be within one 
standard error of the true mean and unlikely to be more than two standard 
errors from it. We shall look at this more precisely in Section 8 . 3 .  

I n  most cases we  do  not know the true value o f  the population variance, u2 , 

but only its estimate, s2, which was described in Chapter 4. We can use this to 
estimate the standard error by s/.J n .  This estimate is also referred to as the 
standard error of the mean. It is usually clear from the context whether the 
standard error is the true value or estimated from the data. 

When the sample size, n, is large, the sampling distribution of x tends to a 
Normal Distribution. Also, we can assume that s2 is a good estimate of u2• So 
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Fig. 8.4 Sampling distribution of the mean of four observations fr m a  standard 
Normal Distribution. 

for large n ,  x is an observation from a Normal Distribution with mean µ and 
standard deviation s/-J n. So with probability 0 .95 ,  x is within cwo, or more 
precisely is within 1 .96 standard errors of µ .  With small samples we cannot 
assume either a Normal Distribution or, more important ly, that s2 is a good 
estimate of a2• We shall discuss this in Chapter 1 0 . 

For an example, consider the 57 FEV l measurements of Chapter 4. We 
have x = 4.062 litres, s2 = 0.449 1 74, s = 0.67 litres . Then the standard error 
ofx is -J(s2/n) = -J0.4491 74/57 = -J0.007 880 = 0.089. The best estimate of 
the mean FEV l in the population is then 4.06 litres, with standard error 0.089 
litres . 

The mean and standard error are often written as 4.062 ± 0.089. This is 
rather misleading, as the true value may be up to two standard errors from the 
mean with a reasonable probability. This practice is not recommended . There 
is often confusion between the terms 'standard error' and 'standard 
deviation ' .  This is understandable, as the standard error is a standard 
deviation (of the sampling distribut ion) and the terms are often interchanged 
in this context . The convention is this : we use the term 'standard error' when 
we measure the precision of estimates, and the term 'standard deviation' 
when we are concerned with the variability of populations or distributions. I f  
we want t o  say how good our estimate o f  the mean FEV 1 measurement is, we 
quote the standard error of the mean . If we want to say how widely scattered 
the FEV 1 measurements are, we quote the standard deviation, s. 

8.3.  Confidence intervals 

The estimate of mean FEV 1 is a single value and so is called a paint estimate. 
There is no reason to suppose that the population mean will be exactly equal 
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to the point estimate, the sample mean . It is likely to be close to i t ,  however, 
and the amount by which it is likely to di ffer from the estimate can be found 
from the standard error. What we do is find limits between which the popula
tion mean is likely to lie, and say that we estimate the population mean to lie 
somewhere in the interval (the set of all possible values) between these limits .  
This is called an interval estimate. 

For instance, in the above example we have a large sample, and so we can 
assume that the observed mean is from a Normal Distribution, and that the 
standard error is a good estimate of its standard deviation. We therefore 
expect about 95 per cent of such means to be within 1 .96 standard errors of 
the population mean , µ .  Hence, for about 95 per cent of al l  possible samples, 
the population mean must be greater than the sample mean minus 1 . 96 
standard errors and less than the sample mean plus 1 .96 standard errors . In  
this case we have, with probability 0 .95 or  95  per cent : 

or 

4.062 - 1 .96 x 0.089 < µ < 4.062 + 1 .96 x 0.089 
3 . 89 < µ < 4.24 

3 . 9  < µ < 4.2 litres 

rounding to two significant figures . The values 3 . 9  and 4.2 are called the 95 
per cent confidence limits for the estimate, and the interval 3 . 9-4.2 is called 
the 95 per cent confidence interval. We may define a p per cent confidence 
interval as being a part of the measurement scale in which there is a 
probability of p per cent that the estimated quant ity lies . The confidence 
limits are the ends of the confidence interval . 

I n  this example, the sampling distribution of the mean is Normal and its 
standard deviation is well estimated because the sample is large . This is not 
always true and although it is usually possible to calculate confidence 
intervals for an est imate they are not all quite as simple as this . We shall look 
at the mean of a small sample in Chapter 1 0 . 

There is no necessity for the confidence interval to have a probability of 95 
per cent . For example, we can also calculate 99 per cent confidence limits. 
From Table 7 .2 we find that the upper 0 .5 per cent point of the Standard 
Normal Distribution is 2 . 58 ,  so the probability of a Standard Normal deviate 
being above 2 .58 or below - 2 .58 is I per cent and the probability of being 
within these limits is 99 per cent. The 99 per cent confidence limits for the 
mean FEV I  are therefore, 4 .062 - 2 .58 x 0.089 and 4 .062 + 2 .58  x 

0.089, i . e .  3 . 8  and 4 . 3 .  These give a wider interval than the 95 per cent limits, 
as we would expect since the mean is more likely to be included . The 
probability we choose for a confidence interval is thus a compromise between 
the desire to include the estimated population parameter and the desire to 
avoid parts of scale where there is a low probability that the mean will be 
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found . For most purposes, 95 per cent confidence intervals have been found 
to be satisfactory. 

8.4. Standard error of a proportion 

The standard error of a proportion estimate can be calculated in the same 
way. Suppose the proportion of individuals who have a particular condition 
in a given population is p,  and we take a random sample of size n, the number 
observed with the condition being r. Then the estimated proportion is rln . 
We have seen (Chapter 6) that r comes from a Binomial Distribution with 
mean np and variance np( l - p) . Provided n is large, this distribution is 
approximately Normal. So rln, the estimated proportion, is Normally 
distributed with mean given by np/n = p,  and variance given by 

Var ( �  ) = � Var(r) ,  since n is constant , 
n 
I 

= - np ( l  - p) 
n i  
p ( I  - p) 

n 

and the standard error is 

We can estimate this by replacing p by rln . 
For example, in a survey of a random sample of first-year secondary 

schoolchildren in Derbyshire, 1 1 8 out of 2837 boys said that they usually 
coughed first thing in the morning . This gave a prevalence estimate of 
1 1 8/2837 = 0.04 1 6, with standard error v'0.04 1 6  x ( I  - 0 .04 1 6)/2837 = 

0.0038 .  The sample is large so we can assume that the estimate is from a 
Normal Distribution and that the standard error is well estimated . The 95 per 
cent confidence interval for the prevalence is thus 0.04 16  - 1 .96 x 0.0038 to 
0.04 1 6  + 1 .96 x 0.0038 = 0.034 to 0.049. Even with this fairly large sample 
the estimate is not very precise. 

The standard error of the proportion is only of use if the sample is large 
enough for the Normal approximation to apply. A rough guide to this is that 
np and n (I - p) should both exceed 5. This is usually the case when we are 
concerned with straightforward estimation. 

8.5. Standard error of the difference between two means 

In many studies we are much more interested in the difference between two 
parameters than in their absolute value. These could be means, proportions, 
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the slopes of l ines, and many other statistics. This i s  usually straightforward 
if the parameters are estimated from two independent samples . It can be 
more difficult if the samples are matched or are the same. 

For the difference between any two parameters estimated from 
independent samples the standard error can be found as follows . Suppose the 
estimates are x, and x2, with standard errors se1 and se2, and hence sampling 
variances se12 and se}. The difference between the parameters is estimated by 
x, - x2 • Then 

Var(x, - x2) = Var(xi) + Var(x2) , because x, and x2 are independent, 
= sei 2 + se} 

and standard error of Xi - x2 

If we are comparing two means x, and x2 from samples .size n 1  and n2 with 
variance estimates si2 and s}, the standard errors of the means will be 
.J(si21ni)  and .J(s}ln2) .  The standard error of the difference is then � s 2 s 2 _I_ + _2_ 

n i  n2 

Provided the samples are large enough for the sampling distributions of 
means to be Normal and for the variances to be well estimated, say both n i  
and n2 greater than 30,  the 95 per cent confidence interval for the difference 
will be 

For an example, in a study of respiratory symptoms in schoolchildren we 
wanted to know whether children reported by their parents to have 
respiratory symptoms had worse lung function than children who were not 
reported to have symptoms. Ninety-two children were reported to have 
cough during the day or at night, and their mean PEFR was 294.8 litre/min 
with standard deviation 57 . 1  litre/min. The number of children not reported 
to have the symptom was 1 643, and their mean PEFR was 3 1 3 .6 litre/min 
with standard deviation 55 .2  litre/min. We thus have two large samples, and 
can apply the Normal Distribution . We have 

n i  = 92 Xi = 294.8 s, = 57. 1 sei = [¥, 2 

n2 = 1 643 x2 = 3 1 3 . 6  S2 = 55 .2 se2 = {*l{ 3 
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The difference between the two groups is 

Xi - Xi = 294. 3  - 3 1 3 . 6  
= - 1 8 .8  

The standard error of the  difference i s  

I Sii Sii 57.  l 2 55 .2i 

� -;;;- + -;;; = 
92 

+ 
1 643 

= 6. 1 1  

The 95 per cent confidence limits for the difference are thus - 1  . 8  - 19 . 6  x 
6. 1 1  and - 1 8 . 8  + 1 .96 x 6. 1 1 ,  i . e .  - 6 . 8  and - 30 .8 litre/min. This con
fidence interval does not include zero, so we have good evidence that there is a 
difference between mean lung function in these two groups of children . The 
difference itself is not very well estimated, however. It could be anything 
from 7 to 3 1  litre/min lower in children with the symptom. 

8.6. Standard error of the difference between two 
proportions 

The argument applied to the comparison of two means works equally well for 
the comparison of two proportions. Suppose we have two proportions 
estimated by Pi and pi obtained from independent samples size n i and ni. We 
want the standard error of the difference, estimated by p1 - Pi · The standard 
errors of the two proportions are 

se(p,) = 
� Pi( l  - Pi) 

n, 
The standard error of the difference is given by 

se(p, - Pi) = .J se(pi)i + se(pi)2 

= I p,( 1 - p,) + Pi( l  - Pi) 
� n 1 ni 

Provided the conditions of Normal approximation are .rnet (see Section 8 .4) 
we can find a confidence interval for the difference in the usual way. 

For example, in a study of respiratory disease in childhood, we wanted to 
know whether children with bronchitis in infancy get more respiratory 
symptoms in later l ife than others . We had 273 children with a history of  
bronchitis before age 5 years, 26  of whom were reported to have day or night 
cough at age 14 .  We had 1046 children with no bronchitis before age 5 years, 
44 of whom were reported to have day or night cough at age 1 4 .  

Bronchitis 
ni = 273 
Pi = 26/273 = 0.095 24 

No bronchitis 
ni = 1 046 
Pi = 44/ 1 046 = 0.042 07 
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The d i fference is 

Pi - p2 = 0 .095 24 - 0 . 042 07 = 0 . 053 1 7  

The standard error o f  t he d i fference i s  

I P i O  - Pi ) + P2( l  - P2) 
� n i 112 

0 . 095 24 x ( I  - 0 . 095 24) 

273  

0 . 042 07  x ( I  - 0 . 042 07) + ����������-'-

.Jo .ooo 3 1 5  638 6 + o .ooo 038 527 8 

.Jo .ooo 354 1 66 5 

0 . 0 1 88 

1 046 

The 95 per cent confidence i n terval for the di fference is 

0 . 053  1 7  - 1 . 96 x 0. 0 1 88 to 0 . 053 1 7  + 1 . 96 x 0 . 0 1 88 
= 0 . 0 1 6  to 0 . 090 

1 4 3  

Although the d i fference is  not  very well estimated , i t  i s  we l l  away from zero 
and gives us clear evidence that chi ldren wi th bronchi t is  reported in i n fancy 
are more l i kely t han others to  be reported to  have respiratory symptoms i n  
later l i fe .  T h e  data on l ung funct ion in  Section 8 . 5  give u s  some reason t o  
suppose t hat t h i s  i s  n o t  ent irely d u e  to  response bias (Chapter 3) .  A s  i n  
Section 8 .4 ,  the  standard error o f  the di fference bet ween t w o  proport ions i s  
not very useful for sma l l  samples. 

8. 7 .  Standard error of a sample standard deviation 

In most appl icat ions we are interested in the est imat ion o f  the standard devia
t ion as a means to an end rather t han because we want to k now i t  for d i rect 
appl icat i o n .  We do need to  know how precisely it i s  est imated if we want to 
use i t  to  find a c l inical reference range or normal range (Sect ion I 5 . 5 ) .  U n l i ke 
that of  the  sample mean , x, t he standard error of  the sample standard dev ia
t ion ,  s, depends on the  distr ibut ion of  t he observat ions t hemselves . We 
have seen i n  Appendix 7 A t hat provided the observat ions come from a 
Normal Dist r ibut ion , (11 - l )s2/a2 is from a Chi-squared Distribut ion w i th  
( n  - I )  degrees of  freedom . The  square root of  th i s  Chi-squared Distr i 
but ion is  approximately Normal wi th variance 1 /2 i f  / 1  i s  large enough ,  so 
.J(n - l )s2/a2 i s  approximately Normal ly d istr ibuted wi th variance 1 /2 .  
Hence s i s  approximately Normal ly d is tributed wi th variance a2/2(n - 1 ) . 

The standard error o f  s is t hus .J[a212(n - l )] ,  est imated by .J[s 2/2(n - l ) ] .  
This is only  t rue when the observations t hemselves are from a Normal 
Distr ibut ion .  
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8.8. Sample size for an estimate 

We can use the concepts of standard error and confidence i nterval to help 
decide how many subjects should be included in a sample . If we want to 
estimate some parameter of a population and we know how the standard 
error is related to the sample size then we can calculate the sample size 
required to give a confidence interval with the desired size. The difficulty i s  
that the  standard error may also depend either on some other parameter of  
the  population, such as  the  standard deviation, or on the  parameter we wish 
to estimate, as for a proportion. We must estimate these either from data 
already available, or carry out a pilot study to obtain a rough estimate .  The 
calculation of sample size can only be approximate anyway, so these para
meter estimates used in i t  need not be precise. 

For example, we wish to estimate the mean serum cholesterol in a 
population of men. We note that other workers have reported serum choles
terol to have a standard deviation, of about 40 mg/ 1 00 ml. We therefore 
expect the standard error of the mean to be � :2 

= 
� 4: = �� 

We can set the size of standard error we want and choose the ample size to 
achieve this .  We might decide that a standard error of 5 is what we want ,  i . e .  
for the estimate to be within 2 x 5 = 1 0  mg/ 1 00 ml of the true value. 

Then 

40 se = --

-Jn 
402 

n = --
(se)2 
402 
52 = 64 

We can also see what the standard error would be for different values of n :  

n 1 0  20 50 100 200 500 
standard 
error 1 3  8 .9 5 . 7  4.0 2.8 1 .8 

So that if we had a sample size of 200, we would have a probability of 0 .95 of 
being within 5.6 units of the mean (two standard errors), whereas with a 
sample of 50 we could only be confident of being within 1 1 .4 units of the 
mean. If the maximum sample we could us�is 1 00, and we need to be within 5 
units of the true value, there is no point i n  proceeding. 
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When we wish to estimate a proportion we have a further problem . The 
standard error depends on the very quantity which we wish to estimate. We 
must guess the proportion first . For example, suppose we wish to estimate the 
prevalence of a disease, which we suspect to be about 2 per cent, to the nearest 
1 per 1000 . The value of p is about 0.02 and we want 95 per cent confidence 
intervals to be 0 .00 1  on either side. So the standard error must be half this, 
0 .0005 . 

0 .0005 = � 0.02 x ( 1  - 0.02) 
n 

n 
0.02 x ( 1  - 0.02) 

0.00052 
78 400 

The accurate estimation of very small proportions requires very large 
samples ! This is a rather extreme example and we do not usually need to 
estimate proportions with such accuracy. A wider confidence interval, 
obtainable with a smaller sample, is usually acceptable. 

If we can only afford a sample size of 1000, what will be the standard error? � 0.02 x ( 1  - 0.02) = 0.0044 
1000 

The 95 per cent confidence interval would thus be the observed proportion 
± 0.009 . We would expect the true value to be within about 50 per cent of the 
estimate. If this accuracy were sufficient for the purpose we could proceed . 

These estimates of sample size are based on the assumption that the sample 
is large enough to use the Normal Distribution. If a very small sample is 
indicated it will be inadequate and other methods must be used which are 
beyond the scope of this book. Sample size for comparisons are usually 
estimated rather differently. The size of the confidence interval for a 
difference is not the important thing, but whether it contains zero. We shall 
discuss this in Chapter 9 .  

Exercise 8M 

(Each branch is either true or false . )  

l .  The standard error of the mean o f  a sample: 

(a) measures the variability of the observations; 
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(b) is the accuracy with which each observation is measured; 

(c) is a measure of how far the sample mean is l ikely to be from the 
population mean; 

(d) is proportional to the number of observation; 
(e) is greater than the estimated standard deviation of the population. 

2. 95 per cent confidence limits for the mean estimated from a set of 

observations: 

(a) are limits between which, in the long run, 95 per cent of observations fall ;  

(b) are a way of measuring the precision of the estimate of the mean; 

(c) are limits within which the sample mean falls with probability 0.95 ;  
(d) are limits which exclude the population mean with probability 0.05 ;  
(e) are a way of measuring the variability o f  a set o f  observations . 

3. If the size of a random sample were increased, we would expect: 

(a) the mean to decrease; 

(b) the standard error of the mean to decrease; 
(c) the standard deviation to decrease; 

(d) the sample variance to increase; 

(e) the degrees of freedom for the estimated variance to increase. 

4 .  The prevalence o f  a condition i n  a population is 0 . 1 .  If the prevalence is 

estimated repeatedly from samples of size 100, these estimates will form 

a distribution which : 

(a) is a sampling distribution; 

(b) will be approximately Normal ; 

(c) will have mean = 0. 1 ;  
(d) will have variance = 9; 
(e) will be Binomial . 

5 .  It i s  necessary t o  estimate the mean FEV l b y  drawing a sample from a 

large population. The accuracy of the estimate will depend on:  

(a) the mean FEV l in the population; 
(b) the number in the population; 

(c) the number in the sample; 
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(d) the way the sample i s  selected; 

(e) the variance of FEY ! in the population . 

Exercise BE 

Table 8E . 1  shows data from a study of plasma magnesium in diabetics. The 
subjects were all patients attending one out-patient diabetes clinic over a five
month period . 

Table BE. 1.  Plasma magnesium levels for diabetics of different 
treatment regimes [Mather et al. 1 979) 

Treatment 

I nsulin 
All non-insulin therapy 

Oral hypoglycaemic therapy 
Dietary restriction alone 

Plasma 
magnesium 
(mmol/I) 

Number of patients mean 

227 0 . 7 1 9  
352 0. 748 
225 0.744 
1 27 0.756 

s .d .  

0 .068 
0 .070 
0.070 
0 .070 

N .B .  Fifteen patients whose blood samples could not be analysed and three receiving 

both insulin and oral hypoglycaemic drugs have been excluded. 

I .  Find the standard errors of the mean plasma magnesium for each 
group. 

2 .  Find the standard error of the difference in mean plasma magnesium 
between patients on oral hypoglycaemic therapy and patients on dietary 
restriction alone . Find a 95 per cent confidence interval for the difference .  

3 .  Find the standard error of the difference between mean plasma 
magnesium in insulin-treated and non-insulin-treated patients .  Find a 95 per 
cent confidence interval for this difference. 

4. What can be concluded about the relationship between therapy, which 
is determined by type or severity of diabetes, and plasma magnesium level? 

5 .  How many patients would we need in a group to estimate the mean 
plasma magnesium to within I per cent? 



9. Significance tests 

9.1 .  Testing a hypothesis 

I n  Chapter 8 we dealt with estimation and the precision of estimates . This i s  
one form of statistical inference, the process by which we  use samples to  draw 
conclusions about the populations from which they are taken . In this chapter 
we will introduce a different form of inference, the significance test. 

A significance test enables us to measure the strength of evidence which the 
data supplies for or against some proposition of interest . For example, 
consider the cross-over trial of pronethalol for the treatment of angina, 
described in  Chapter 2 .  Table 9. 1 shows the results of the trial, the number of 
attacks over four weeks on each treatment. These 12 patients are a sample 
from the population of all patients. Would the other members of this popula
tion experience fewer attacks while using pronethalol? We can see that the 
number of attacks is highly variable from one patient to another, and it is 
quite possible that this is true from one occasion to another as well . So it 
could be that some patients would have fewer attacks while on pronethalol 
than while on placebo quite by chance. In a significance test, we ask whether 
the difference observed was small enough to have occurred by chance . If i t  
were so ,  then the  evidence in  favour of there being a difference between the 
treatment periods would be weak. On the other hand, if the difference were 

Table 9.1.  Results of a trial of pronethalol for the treatment of angina pectoris 
(Pritchard et al. 1 963) 

Number of attacks while on 
placebo 

7 1  
323 

8 
1 4  
23 
34 
79 
60 

2 
3 

1 7  
7 

pronethalol 

29 
348 

I 
7 

1 6  
25 
65 
4 1  

0 
0 

1 5  
2 
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much larger than we would expect due to chance the evidence in favour of a 
real difference would be strong. 

To carry out the test of significance we suppose that there is no difference 
between the two treatment periods. We hypothesize that there is no 
difference between the periods. The hypothesis of 'no difference' or 'no 
effect ' is called the null hypothesis. We compare this with the alternative 
hypothesis of a difference between the treatments, in either direction . We do 
this by finding the probability of getting data as extreme as those observed i f  
the null hypothesis were true. I f  this probability i s  large the  data are 
consistent with the null hypothesis; if it is small the data are unlikely to have 
arisen if the null hypothesis were true and the evidence is in favour of the 
alternative hypothesis. 

9.2. An example: the sign test 

We now find a way of testing this null hypothesis . An obvious start is to 
consider the differences between the number of attacks on the two treatments 
for each patient ,  as in Table 9 .2 .  Now, if the null hypothesis were true then 
differences in number of attacks would be just as likely to be positive as 
negative; they would be random. The probability of a change being negative 
would be equal to the probability of it becoming positive, 0 . 5 .  Then the 
number of negatives would be an observation from a Binomial Distribution 
with n = 12 and p = 0 .5 .  (If there were any subjects who had the same 
number of attacks on both regimes we would omit them, as they provide no 
information about the direction of any difference between the treatments . In 
this test , n is the number of subjects for whom there is a difference, one way 
or the other . )  

Table 9.2. Differences between numbers o f  attacks of 
angina while on placebo and pronethalol 

Number of attacks 
while on Difference Sign of 
placebo pronethalol placebo-pronethalol difference 

7 1  29 42 + 
323 348 - 25 

8 1 7 + 
1 4  7 7 + 
23 1 6  7 + 
34 25 9 + 
79 65 1 4  + 
60 4 1  1 9  + 

2 0 2 + 
3 0 3 + 

1 7  1 5  2 + 
7 2 5 + 
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If the null hypothesis were true, what would be the probability of getting an 
observation from this distribution as extreme as the value we have actually 
observed? The expected number of negatives would be np = 6. What is the 
probability of getting a value as far from this as is that observed? 

The number of negative di fferences is I .  The probability of getting I 
negative change is 

n !  p'{ l _ p)n - r  = � x 0.5 1 x 0 .5 1 1 
r ! (n - r) ! I ! l l !  = 12  x 0.5 12 

= 0.002 93 

This is not a likely event in itself. However, we are interested in the 
probability of getting a value as far from the expected value, np = 6 ,  as is the 
observed value I .  Clearly 0 is further and must be included . The probability 
of no negative changes is 

� x 0.5° x 0.5 12 = 0.000 24 
O! 1 2 !  

So the probability o f  one o r  fewer negative changes i s  0.002 93 - 0 .000 24  = 

0.003 I 7 .  We said that the alternative hypothesis was that there was a 
difference in either direction . We must, therefore, consider the probability of  
getting a value as  extreme on the other side of the mean, that i s ,  I I or 12  
negatives . In other words we want to know the probability of the number of 
negatives being at least as far from its expected value as that observed . A 
sketch of the distribution should make this clearer (Fig. 9 . 1 ) . 
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Fig. 9.1 Extreme values of the test statistic in a sign test. 



General principles of significance tests 

The probability of 1 1  or 1 2  negatives is 

1 2 !  
1 1  ! 1 ! 

1 2 '  x 0 .5 1 1 x 0 .5 1 + __ 
. - x 0 .5 12 x 0 .5° 

1 2 !0 !  = 0.002 93  + 0.000 24 
= 0.003 1 7  

1 5 1  

Hence, the probability of getting a s  extreme a value as that observed, 
in either direction, is 0.003 17 + 0.003 17 = 0.006 34. This means that 
if the null hypothesis were true we would have data which are so extreme 
that the probability of them arising by chance is 0.006, less than one in a 
hundred . 

Thus , we would have observed a very unlikely event if the null hypothesis 
were true. This means that the data are not consistent with null hypothesis, so 
we can conclude that there is strong evidence in favour of a difference 
between the treatment periods . (Since this was a double-blind randomized 
trial , it seems reasonable to suppose that this was caused by the activity of the 
drug.) 

This is a test of significance, the sign test. The number of negative differ
ences is called the test statistic. 

9.3.  General principles of significance tests 

The general procedure for a significance test is as follows : 

1 .  Set up a null hypothesis and its alternative. 
2 .  Find the value of the test statistic. 
3. Refer the value of the test statistic to a known distribution which it woul_i:l 

follow if the null hypothesis were true. 
4.  Find the probability of a value of the test statistic arising which is as or 

more extreme than that observed. 
5. Conclude that the data are consistent or inconsistent with the null 

hypothesis .  

We shall deal with several different significance tests in  this and subsequent 
chapters . We shall see that they all follow this pattern. 

If the data are not consistent with the null hypothesis , the difference is said 
to be statistically significant. If the data do not support the null hypothesis, it 
is sometimes said that we reject the null hypothesis, and if the data are con
sistent with the null hypothesis it is said that we accept it. Such an 'all or 
nothing' decision-making approach is seldom appropriate in medical 
research . It is preferable to think of the significance test probability as an 
index of the strength of evidence against the null hypothesis. 
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9.4. Significance levels 

We must still consider the question of how small is small. A probability of  
0.006, as  in the example above, i s  clearly small and we have a quite unlikely 
event. But what about 0.06, or 0. 1 ?  Suppose we take a probability of 0.01  or 
less as constituting reasonable evidence against the null hypothesis . I f  the null 
hypothesis is true, we shall make a wrong decision one in a h ndred times . 
Deciding against a true null hypothesis is called an error ofthefirst kind. We 
get an error of the second kind if we decide in favour of a null hypothesis 
which is in fact false. Now the smaller we demand the probability be before 
we decide against the null hypothesis, the larger the observed difference must 
be, and so the more likely we are to miss real differences .  By reducing the risk 
'of an error of the first kind we increase the risk of an error of the second kind . 

The conventional compromise is to say that differences are significant i f  
the probability i s  less than 0.05 . This is a reasonable guideline, but should not 
be taken as some kind of absolute demarkation . There is not a great dif
ference between probabilities of 0.06 and 0.04, and they surely indicate 
similar strength of evidence. It is better to regard probabilities around 0.05 as 
providing some evidence against the null hypothesis, which increases in  
strength as the  probability falls .  If  we decide that the difference i s  significant, 
the probability is sometimes referred to as the significance level. 

9.5.  One- and two-sided tests of significance 

In the above example, the alternative hypothesis was that there was a dif
ference in one or other direction. This is called a two-sided test, because we 
are interested in extreme values in both directions . It would have been 
possible to have the alternative hypothesis that there was a decrease in the 
pronethalol direction, in which case the null hypothesis would be that the 
number of attacks on the placebo was less than or equal to the number on 
pronethalol .  This would give p = 0.003 17,  and of course, a higher signi
ficance level than the two sided test . This would be a one-sided test (Fig. 9 .2) .  
The logic of this is that we should ignore any signs that the active drug is 
harmful to the patients . If  what we were saying was ' if  this trial does not give 
a significant reduction in angina using pronethalol we will not use it again' , 
this might be reasonable, but the research process does not work like that . 
This is one of several pieces of evidence and so we should certainly use a 
method of inference which would enable us to detect effects in either 
direction. Two-sided tests are also called two-tailed. 

The question of whether one- or two-sided tests should be the norm has 
been the subject of considerable debate among practitioners of statistical 
methods . Perhaps the position taken depends on the field in which the testing 
is usually done. In biological science, treatments seldom have only one effect 
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Fig. 9.2 One- and two-sided tests of significance. 

1 5 3  

and relationships between variables are usually complex . Two-sided tests 
would seem to be generally preferable. 

There are circumstances in which a one-sided test is appropriate. In a study 
of the effects of an investigative procedure, laparoscopy and hydrotubation, 
on the fertility of  sub-fertile women (Luthra et al. 1 982), we studied women 
presenting at an infertility clinic. These women were observed for several 
months, during which some conceived, before laparoscopy was carried out 
on those still infertile. These were then observed for several months after
wards and some of these women also conceived. We compared the 
conception rate in the period before laparoscopy with that afterwards. 
Of course, women who conceived during the first period did not have a 
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laparoscopy. We argued that the less fertile a woman was , the longer it was 
likely to take her to conceive . Hence, the women who had the laparoscopy 
should have a lower conception rate (by an unknown amount) than the larger 
group who entered the study, because the more fertile women had conceived 
before their turn for laparoscopy came. To see whether laparoscopy 
increased fertil ity, we could test the null hypothesis that the conception rate 
afer laparoscopy was less than or equal to that before. The alternative 
hypothesis was that the conception rate after laparoscopy was higher than 
that before. A two-sided test was inappropriate because if the laparoscopy 
had no effect on fertility the post-laparoscopy rate was expected to be lower; 
chance did not come into it. In fact the post-laparoscopy conception rate was 
very high and the difference clearly significant . 

9.6. Significant, real and important 

I f  a difference is statistically significant, then it may well be real , but not 
necessarily important . For example, we may look at the effect of drug, given 
for some other purpose, on blood pressure . Suppose we find that the drug 
raises blood pressure by an average of I mm Hg, and that this is statistically 
significant. A rise in blood pressure of I mm Hg is not clinically significant, 
so, although it may be there, it does not matter. I t  is (statistically) significant, 
and real, but not important. 

On the other hand, if  a difference is not statistically significant, it could 
still be real .  We may simply have too small a sample to show that a difference 
exists . Furthermore, the difference may still be important . The difference in 
mortality in the anticoagulant trial of Carleton et al. ( 1960), described in 
Chapter 2,  was not significant, the difference in percentage survival being 5 . 5  
in favour of the active treatment . However, the authors also quote a con
fidence interval for the difference in percentage survival of 24.2  in favour of 
heparin to 1 3  .3 in favour of the control treatment. Thus from these data there 
could have been a difference in survival of as much as 24 per cent in favour of  
the treatment, which would certainly be  important if  it turned out to  be the 
case. 'Not significant ' does not imply that there is no effect . It means that we 
have failed to demonstrate the existence of one. 

9.7.  Comparing the means of large samples using the 
Normal Distribution 

We have already seen in Section 8 . 5  that if we have two samples of size n1 and 
n2, with sample means .X1 and .X2 and sample variances s12 and s/, the standard 
error of the difference estimate.X1 - .X2 is .../[(s12/n 1 + s22/n2)] . Furthermore, if 
n1 and n2 are large, .X1 - .X2 will be from a Normal Distribution with mean 
µ1 - µ2, the population difference, and its standard deviation well estimated 
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by the standard error estimate. We used this to find a confidence interval for 
the difference between the means . 

We can use this confidence interval to carry out a significance test of the 
null hypothesis that the difference between the means is zero, i . e .  the alter
native hypothesis is that µ1 and µ2 are not equal . If the confidence interval 
includes zero, then the probability of getting such extreme data if the null 
hypothesis were true is greater than 0.05 (i .e .  1 - 0.95) . I f  the confidence 
interval excludes zero, then the probability of such extreme data under the 
null hypothesis is less than 0 .05 and the difference is significant. 

Another way of doing the same thing is to note that 

x\ - X2 - (µ, - µ1) 

s 2 s 2 _I_ + _2_ 

n 1 n2 
is from a Standard Normal Distribution, i .e .  mean 0 and variance 1 .  Under 
the null hypothesis that µ1 = µ2, or µ1 - µ2 = 0, �his is 

x, - X2 

V s 2 s 2 
_I_ + _2_ 

n 1  n2 
This is the test statistic, and i f  it lies between - 1 .96 and + 1 .96 then the pro
bability of such an extreme value is greater than 0.05 and the difference is not 
significant .  If the test statistic is greater than 1 .  96 or less than - 1 .  96, there is 
a less than 0 .05 probability of such data arising if the null hypothesis were 
true, and the data not consistent with null hypothesis; the difference is 
significant at the 0.05 or 5 per cent level . 

For an example, in the study of respiratory symptoms in schoolchildren 
mentioned in 8 . 5  above, we wanted to know whether children reported by 
their parents to have respiratory symptoms had worse lung function than 
children who were not reported to have symptoms. Ninety-two children were 
reported to have cough during the day or at night, and their mean PEFR was 
294.8 litre/min with standard deviation 57 . 1  litre/min. The number of 
children not reported to have the symptom was 1 643, and their mean PEFR 
was 3 1 3 . 6  litre/min with standard deviation 55 .2 litre/min .  We thus have two 
large samples, and can apply the Normal test . We have 

n 1 = 92 x, = 294.8 s1 = 57 . 1  
n2 = 1 643 x2 ;= 3 1 3 . 6  s2 = 55 .2  

The difference between the two groups is x, - x2 = 294 .3  - 3 1 3 . 6  = - 1 8 . 8 .  
The standard error of the difference is 

. I � +  .!L 
= I 51 . 1 2 + 55 .22 

� n1 n2 � 92 1 643 = 6. 1 1  
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The test statistic is 

- 3 . 1  

Under the null hypothesis this is an observation from a Standard Normal 
Distribution, and the two-sided probability of this is about 0.002 from Table 
7 .2 .  If the null hypothesis were true the data which we have observed would 
be unlikely. We can conclude that children reported to have cough during the 
day or at night have lower PEFR than other children . 

I n  this case, we have two ways of interpreting the same calculation : as a 
confidence interval estimate or as a significance test .  The confidence interval 
is usually superior, because we not only demonstrate the existence of a 
difference but also have some idea of its size . This is of particular value when 
the difference is not significant . For example, in the same study only 27 
children were reported to have phlegm during the day or at night . These had 
mean PEFR of 298 .0 litre/min and standard deviation 53 .  9 litre/min, hence a 
standard error for the mean of 10 .4 litre/min. This is greater than the 
standard error for the mean for those with cough, because the sample size is 
smaller. The 1 708 children not reported to have this symptom had mean 
3 1 2 .6  l itre/min and standard deviation 55 .4 litre/min, giving a standard error 
of 1 . 3 litre/min .  Hence the difference between the means was - 14 .6 ,  with 
standard error given by 

,,)10.42 + l . 32 = 10 . 5  

The test statistic i s  

- 14.6 
10. 5  

- 1 .4 

This has a probability of about 0. 16 ,  and so the data are consistent with the 
null hypothesis. However, the 95 per cent confidence interval for the 
difference is 

- 1 4.6 - ( 1 .96 x 1 0 .5) to - 14.6 + ( 1 .96 x 1 0 . 5) = - 35 to 6 litre/min 

We see that the difference could be just as great as for cough . Because the 
size of the smaller sample is not so great , the test has less power for the 
phlegm comparison than it has for the cough comparison.  We shall discuss 
power further below, but note for the moment that where a confidence interval 
can be calculated it is more informative than a test of significance. 
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9.8. Comparison o f  two proportions 

For the comparison of means the test of significance and the confidence 
interval required the same calculation, because the standard error of the dif
ference was the same whether the null hypothesis was true or not . When we 
compare two proportions this is not the case, because the standard error 
depends on the proportions themselves. 

Suppose we wish to compare two proportions, Pi and p2, estimated from 
large independent samples of size ni and n2. The null hypothesis is that the 
proportions in the populations from which the samples are drawn are the 
same. Since under the null hypothesis the proportions for the two groups are 
the same, we can get one common estimate of the proportion and use it to 
estimate the standard errors. 

We estimate the common proportion from the data by 

Ti + Tz p = �-� 
n i + n1 

We want to make inferences from the difference between samle proportions, 
Pi - p2, so we require the standard error of this. 

se(pi) = � p(l - p) 
, se(p2) = � p( l - p) 

n i n1 
Asp is based on more subjects than either Pi or p2, if the null hypothesis were 
true then standard errors would be more reliable than those estimated in 
Section 8 .  6 using Pi and p2 separately 

se(pi - P2) = .J se(pi)2 + se(p2)2 

since the samples are independent. Hence 

Y p( l - p) p( l - p) 
se(pi - P2) = --- + ---

We then find the test statistic 

ni n1 

= lr--�-(1--p
-

) -(_l
_

+ 
___ l ) 

� ni n1 

p( l - p) 
(-1 + _I ) 

ni n1 
Under the null hypothesis this has expected value zero . Because the sample is 
large, p( l - p) is a good estimate of variance, so 
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p(l - p) 

(-1 + _1 ) 
n1 n2 

is a good estimate of the standard deviation of the distribution from which 
(p1 - p2) comes, i . e .  the standard error, so the test statistic has variance one. 
Because the sample is large, (p1 - p2) can be assumed to come from a Normal 
Distribution.  Hence i f the null hypothesis were true, the test statistic would be 
from a Standard Normal Distribution. 

In Section 8 .6 ,  we looked at the proportions of children with bronchitis in 
infancy and with no such history who were reported to have respiratory 
symptoms in later l ife. We had 273 children with a history of bronchitis 
before age 5 years, 26 of whom were reported to have day or night cough at 
age 14 .  We had 1 046 children with no bronchitis before age 5 years, 44 of 
whom were reported to have day or  night cough at  age 14 .  We shall test t l i ·.! 
null hypothesis that the prevalence of the symptom is the same in the popula
tions, against the alternative that it is not . 

Bronchitis 
n, = 273 

No bronchitis 
n2 = 1 046 

p1 = 26/273 = 0.095 24 P2 = 44/ 1046 = 0.042 07 

= 
26 + 44 

= 0.053 07 p 
273 + 1 046 

p 1 - p2 = 0.095 24 - 0.042 07 = 0.053 1 7  

se(p1 - p2) = � p(l - p) (-1 + -1 ) 
n1 n2 

= 
� 

0.053 07 ( 1  _ 0.053 07) c�3 + 
1 0

1
46
) 

= 0.0 1 5  24 
0.053 1 7  
0 . 0 1 5  24 

= 3 .49 

Referring this to the Table 7 .2  of the Normal Distribution, we find the 
probability of such an extreme value is less than 0.01 , so we conclude that the 
data are not consistent with the null hypothesis . We conclude that children 
with a history of bronchitis are more likely to be reported to have day or night 
cough at age 14 .  

Note that the standard error used here is not the same as that found in 
Section 8.6 .  It is only correct if the null hypothesis is true. If  there is little 
difference between the proportions the two formulae will give very similar 
answers . If there is a difference, as here, the formula of Section 8 .6  is used 
for finding the confidence interval. 
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9.9. The power o f  a test 

The test for comparing means in Section 9. 7 is more likely to detect a dif
ference between two populations if that difference is large than it is if that 
difference is smal l .  The probability that a test will produce a significant 
difference at a given significance level is called the po wer of the test . For a 
given test ,  this will depend on such things as the difference between the 
populations compared , the sample size and the significance level chosen. We 
have already noted in 9.4 that we are more l ikely to obtain a significant dif
ference with a significance level of 0.05 than with one of 0.0 1 . We have 
greater power if the critical probability is larger. 

We can calculate the power of the Normal comparison of two means quite 
easily. The sample difference (x1 - x2) is from a Normal Distribution with 
mean (µ1 - µ2) and standard deviation v1(a12/n 1 + az

2!n2), the standard error, 
which we shall denote by se. The test statistic to test the null hypothesis 
µ1 = µ2 is (x1 - x2)1se. The test will be significant at the 0.05 level if the test 
statistic is further from zero than 1 .  96. If µ1 > µ2, it is very unlikely that we 
will find x1 significant ly less than x2, so for a significant difference we must 
have (x1 - x2)/se > 1 .96 . 

We now find the probability that (x1 - x2)/se will exceed I .  96. 

X1 - X2 - (µ1 - µz) 
se 

is an observation from a Standard Normal Distribution. We can find the 
probability that this exceeds any particular value x from 1 - P(x)  in Table 
7 . 1 . I f  

then 

X1 - X2 
se 

> 1 .96 

X1 - Xz - (µ 1 + µz) 
> 1 .  96 _ 

µ 1 - µz 
se se 

So the power of the test, the probability of getting a significant result ,  is 
1 - P(x)  where x = 1 . 96 - (µ1  - µ2)/se and P(x) is found in Table 7 . 1 .  

For the comparison of PEFR in children with and without phlegm, for 
example, suppose that in fact the population means were µ1 = 3 10 and 
µ2 = 295 litre/min, with standard deviation 55 in each. The sample sizes were 
n1 = 1 708 and n2 = 27, so the standard error of the difference would be 

se = 5 52 552 
-- + -
1 708 27 = 10 .67 l itre/min 
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The population difference we want to be able to detect is µ1 - µ2 
295 = 1 5 ,  and so 

1 .96 - µI - µ2 = 1 .96 - _
1_5 _ 

se 1 0.67 
= 1 .96 - 1 .41 
= 0.55 

3 10 -

From Table 7 . 1 ,  P for 0 .55 is between 0.69 1 and 0. 726, say 0. 7 1 .  The power 
of the test would be I - 0. 71 = 0.29 .  1 f these were the population means and 
standard deviat ion, our test would have had a poor chance of detecting the 
difference in means, even though it existed . The test would have low power .  
Figure 9 . 3  shows the power of  this test as it changes with the difference 
between population means. As the di fference gets larger. the power 
increases , getting closer and closer to 1 .  
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Fig. 9.3 Power curve for a comparison of two means. 

9.10. Sample size for a comparison 

We can use the power of a test to help choose the sample size required to 
detect di fferences if they exist . For example, suppose we want to test a treat
ment designed to lower serum cholesterol .  We shall do this by a two sample 
randomized trial . From previous work we expect the standard deviation to be 
about 40 mg/ I OO ml. We must decide what sort of di fference we want to 
detect , perhaps the sort of difference which will be clinically meaningful . Let 
us suppose this to be 20 mg/ 1 00 ml, half a standard deviation .  Half a 
standard deviation is a fairly small di fference : compare Fig .  7 . 1 3  which 
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shows the  overlap between two curves one standard deviation apart . We will 
take the usual significance level of 0.05 . We want a fairly high power, so that 
there is a high probability of detecting a difference of the chosen size should it 
exist . Usual values for the power required are 0.90 or 0 .95 .  We shall take 
0.90 .  Then from Table 7 . 1  the value of x we require corresponding to 
1 - P(x) = 0.90, P(x) = 0. 1 0, is about - 1 . 3 .  More precisely from Table 
7 .2, i t  is - 1 .28 .  This is the value which 

1 .96 - (µ1 - µ2) 
se 

must exceed to give a probability of 0.90 of obtaining a significant difference. 
Thus we need to find n such that 

20 - 1 .28 = 1 .96 - -----
If we rearrange this we get 

/ 402 + 402 
� n n 

�----� 4: + 4�2 = 1 .9/: 1 .28 

� = 3��4 
n = 3200 x ( 3;�4  ) 2 

83 .98 

Since n must be an integer, n = 84. 
Alternatively, we could start with a range of sample sizes and find out what 

difference we could be sure of detecting at each size. This can often tell us 
whether a trial is worth starting. Of course, there are a lot of assumptions 
made in such calculations and they can only suggest the approximate sample 
size required . This is discussed in more detail by Snedecor and Cochran 
( 1 980), who also give a formula for the comparison of two proportions . 
Altman ( 1 982) gives a neat graphical method of calculation. 

9 . 1 1 .  Multiple significance tests 

If we test a null hypothesis which is in fact true, using 0.05 as the critical 
significance level ,  we have a probability of 0.95 of getting a ' not significant '  
(i .e .  correct) decision . I f  we test two independent true null hypotheses, the 
probability that neither test will be significant is 0 .95 x 0.95 = 0.90 (Section 
6.2) . If we test twenty such hypotheses the probability that none will be signi
ficant is 0.9520 = 0.36 .  This gives a probability of 1 - 0.36 = 0 .64 of getting 
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at least one significant result; we are more likely to get one than not . The 
expected number of spurious significant results is 20 x 0.05 = 1 .  

Many medical research studies are published with large numbers of signi
ficance tests .  These are not usually independent, being carried out on the 
same set of subjects, so the above calculations do not apply exactly. 
However, it is clear that if we go on testing long enough we shall find some
thing which is 'significant' .  We must beware of attaching too much impor
tance to a lone significant result among a mass of non-significant ones . It may 
be the one in twenty which we should get by chance alone. 

This is particularly important when we find that a clinical trial or epidemio
logical study gives no significant difference overall ,  but does so in a particular 
subs�t of subjects, such as women aged over 60. A remarkable paper by Lee et 
al. ( 1 980) demonstrates this. These authors simulated a clinical trial of the 
treatment of coronary artery disease by allocating l 073 patient records from 
past cases into two 'treatment ' groups at random. They then analysed the 
outcome as if it were a genuine trial of two treatments. The analysis was quite 
detailed and thorough. As we would expect, it failed to show any significant 
difference in survival between those patients allocated to the two 
' treatments' . Patients were then subdivided by two variables which affect 
prognosis ,  the number of diseased coronary vessels and whether the left 
ventricular contraction pattern was normal or abnormal . A significant 
difference in survival between the two ' treatment' groups was found in those 
patients with three diseased vessels (the maximum) and abnormal ventricular 
contraction . As this would be the subset of patients with the worst prognosis, 
the finding would be easy to account for by saying that the superior 
' treatment' had its greatest advantage in the most severely il l patients! As the 
authors show, it is in fact explained by small chance differences in other 
prognosis indicators between the two ' treatment' groups in this subset . The 
moral of this story is that if there is no difference between the treatments 
overall ,  significant differences in subsets are to be treated with the utmost 
suspicion. 

Exercise 9M 

(Each branch is either true or false. )  

1 .  In a case-control study, patients with a given disease drank coffee more 

frequently than did controls, and the difference was highly significant. 

We can conclude that: 

(a) drinking coffee causes the disease; 
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(b) there is evidence of a real relationship between the disease and coffee 
drinking in the sampled population; 

(c) the disease is not related to coffee drinking; 

(d) eliminating coffee would prevent the disease; 

(e) coffee and the disease always go together. 

2. In a comparison of two methods of measuring PEFR, 6 of 17 subjects 

had higher readings on the Wright peak flowmeter, 10 had higher 

readings on the mini-peak flowmeter and one had the same on both . If 

the difference between the instruments is tested using a sign test: 

(a) the test statistic may be the number with the higher reading on the Wright 
meter; 

(b) the null hypothesis is that there is no tendency for one instrument to read 
higher than the other; 

(c) a one-tailed test of significance should be used; 

(d) the test statistic should follow the Binomial Distribution (n = 1 6  and 
p = ±> if the null hypothesis were true; 

(e) the instruments should have been presented in random order. 

3.  When comparing the means of two large samples using the Normal test: 

(a) the null hypothesis is that the sample means are equal ; 
(b) the null hypothesis is that the means are not significantly different ; 

(c) standard error of the difference is the sum of the standard errors of the 
means ;  

(d) the standard errors of the means must be equal ; 
(e) the test statistic is the ratio of the difference to its standard error. 

4. In a small randomized double-blind trial of a new treatment in acute 

myocardial infarction, the mortality in the treated group was half that in 

the control group, but the difference was not significant. We can 

conclude that: 

(a) the treatment is useless; 
(b) there is no point in continuing to develop the treatment; 

(c) the reduction in mortality is so great that we should introduce the 
treatment immediately; 

(d) we should keep adding cases to the trial until the Normal test for 
comparison of two proportions is significant ; 

(e) we should carry out a new trial of much greater size . 



1 64 Significance tests 

5. In a large sample comparison between two groups, increasing the sample 

size will:  

(a) improve the approximation of the test statistic to the Normal 
Distribution; 

(b) decrease the chance of an error of the first k
.
ind ; 

(c) decrease the chance of an error of the second kind; 

(d) increase the power against a given alternative; 
(e) make the null hypothesis less likely to be true. 

Exercise 9E 

In this exercise we shall use a test of significance to compare two proportions 
and consider the choice of sample size for such a study. 

Table 2 .  7 shows the results of the field trial of Salk poliomyelitis vaccine. 
In the randomized control areas, 200 745 children received the vaccine, of  
whom 33 developed paralytic polio. Placebo was given to  201 229 children, 
of whom 1 1 5 contracted paralytic polio. 

1 .  Test the significance of the difference in proportion of polio cases 
between the groups . 

2. If this difference were significant, would you conclude that the vaccine 
was effective in preventing polio? 

3 .  Find a 95 per cent confidence·interval for the difference. 

4 .  What size of sample would be required to have a 90 per cent chance of 
detecting a reduction of 40 per cent in polio the number of polio cases, if the 
control rate was expected to be about 50 per 100 000? (Hint: use the method 
of Section 9 . 1 0  with the standard error formula of Section 9 . 8 ,  putting 
n 1  = n2 = n .) 



10. Analysis of the means of 
small samples using the 
t Distribution 

10.1.  The t Distribution 

We have seen in Chapters 8 and 9 how the Normal Distribution can be used to 
calculate confidence intervals for means and carry out tests of significance on 
means when we have large samples . In this chapter we shall see how similar 
methods may be used when we have small samples . We shall do this using the 
t Distribution. 

So far, the probability distributions we have used have arisen because of 
the way data were collected either from the way samples are drawn as for the 
Binomial Distribution, or from the mathematical properties of large samples 
as for the Normal Distribution . The distribution did not depend on any 
property of the data themselves . To use the t Distribution we must make an 
assumption about the distribution from which the observations themselves 
are taken, that is, the distribution of the variable in the population. We must 
assume that the observations come from a Normal Distribution .  As we saw in 
Chapter 7, many naturally occurring variables have been found to follow a 
Normal Distribution closely . We will discuss the effects of any deviations 
from the Normal later. 

We have already mentioned the t Distribution in Chapter 7, as one of those 
derived from the Normal .  We will now look at it in more detail . Assume we 
have a random sample of observations from a Normal Distribution with 
mean µ and variance a2 • We denote the observations by x1 , x2, . • .  , X; , . • .  , xn 
and there are n observations in all .  We estimate the variance by calculating 
the sum of squares about the mean, L(x; - x)2, and dividing by the degrees of 
freedom, n - I ,  to give s2 = L(x; - x)2/(n - 1 ) .  

A s  we saw in Chapter 8 ,  the distribution of all possible sample means, i . e .  
of a l l  possible .X 's ,  has a standard deviation and the estimate of this i s  .J(s2/n), 
the standard error of x. If we had a large sample, we would then say that the 
mean xcomes from a Normal Distribution and that .J (s2/ n) is a good estimate 
of its standard deviation (Chapter 8). Then we could say that the ratio 
(x - µ)l.J(s2/n) was from a Normal Distribution with mean 0 and standard 
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deviation I ,  the Standard Normal Distribution .  However, this is not true for 
a small sample. The estimated standard deviation, s, may vary from sample 
to sample. Samples with small standard deviations will give very large ratios 
and the distribution will have much longer tails than the Nor al . 

The distribution of the ratio (mean over standard error) calculated from a 
small sample depends on the distribution from which the original observa
tions come. As so many variables follow a Normal Distribution, it is worth 
looking at what happens when the observations are Normal . Provided our 
observations are from a Normal Distribution, .X is too . But we cannot assume 
that .J(s2/n) is a good estimate of its standard deviation. We must allow for 
the variation of s2 from sample to sample. In fact, it can be shown that , 
provided the observations follow a Normal Distribution, the sampling 
distribution of (x - µ)/.J(s2/n) is Student 's t Distribution with (n - I )  degrees 
of freedom (see Appendix l OA) . We can therefore replace the Normal 
Distribution by the t Distribution in confidence intervals and significance 
tests for small samples . In fact ,  when we divide anything which is Normally 
distributed with mean zero, such as x - µ, ,  by its standard error which is based 
on a single sum of squares of Normally distributed data, we get a t 
Distribution. 

Figure I O. I shows the t Distribution with I ,  4, and 20 degrees of freedom 
(d.f . ) .  It is symmetrical, with longer tails than the Normal Distribution. For 
example, with 4 d . f. the probability of t  being greater than 2. 78 is 2.5 per cent, 
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Fig. 10.1 Student's t Distribution with 1,  4, and 20 degrees of freedom. 
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whereas for the  Standard Normal Distribution the  probability of t being 
greater than 2. 78 is only 0 .5  per cent .  This is what we expect , as in the 
expression (x - µ,)!-l(s2/n) the variation in s2 from sample to sample will 
produce some samples with low values of s2 and so large values of t. 

As the degrees of freedom, and hence the sample size, increase, s2 will tend 
to be closer to its expected value of a2• The variation in s2 will be less, and 
hence the variation in t will be less. This means that extreme values of t will be 
less likely, and so the tails of the distribution, which contain the probability 
associated with extreme values of t, will be smaller. We have already seen that 
for large samples (x - µ,)!-l(s2/n) follows a Standard Normal Distribution . 
The t Distribution gets more and more like the Standard Normal Distribution 
as the degrees of freedom increase. This is clearly shown in Fig. 1 0 . 1 ,  which 
also shows the Standard Normal Distribution. 

Table 10.1. Two-tailed probability points of the t Distribution 

Degrees of Probability 
freedom 0. 1 0  ( 10%) 0.05 (5%) 0.01  ( ! %) 0.001 (0 . 1  % )  

1 6 .3 1 1 2 .70 63 .66 636.62 
2 2 .92 4 .30 9 .93 3 1 .60 
3 2 .35  3 . 1 8  5 .84 1 2 .92 
4 2 . 1 3  2 .78 4.60 8 .6 1  
5 2 .02 2 .57 4.03 6 .87 

6 1 .94 2.45 3 . 7 1  5 .96 
7 1 .90 2 .36 3 .50 5 .4 1  
8 1 .86 2 .3 1 3 .36 5 .04 
9 1 . 83 2 .26 3 .25 4.78 

I O  1 . 8 1  2 .23 3 . 1 7  4.59 

I I  1 . 80 2 .20 3 . 1 1  4.44 
1 2  1 .78 2 . 1 8  3 .06 4 .32 
1 3  1 .77 2 . 1 6  3 .0 1  4.22 
1 4  1 .76 2 . 1 5  2 .98 4 . 1 4  
1 5  1 . 75 2 . 1 3  2 .95 4 .07 

1 6  1 .75 2 . 1 2  2.92 4.02 
1 7  1 . 74 2 . 1 1  2 .90 3 .97 
1 8  I .  73 2 . 1 0  2.88 3 .92 
1 9  1 .73 2 .09 2 .86 3 .88 
20 1 .73 2 .09 2 .85 3 . 85 

2 1  1 .72 2 .08 2 .83  3 .82 
22 1 .72 2 .07 2 .82 3 . 79 
23 1 .7 1  2 .07 2 .8 1  3 . 77  
24 1 .7 1  2.06 2 .80 3 .75 
25 I .  7 I 2 .06 2 .79 3 .73 

30 1 .70 2.04 2.75 3 .65 
40 1 .68 2 .02 2 .70 3 . 55 
60 1 .67 2 .00 2 . 66 3 .46 

1 20 1 .66 1 .98 2 .62 3 .37 
Infinite 1 .65 1 .96 2.58 3 . 29 
(Normal Distribution) 
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Like the Normal Distribution, the t Distribution function cannot be inte
grated algebraically and its numerical values have been tabulated . Because 
the t Distribution depends on the degrees of freedom, it i not usually 
tabulated in full like the Normal Distribution in Chapter 7. Instead, pro
bability points are given for a range of degrees of freedom . Table 1 0. 1  shows 
two sided probability points for selected degrees of freedom . Thus, with 4 
degrees of freedom, we can see that, with probability 0.05, t will be 2 .78 or 
more from its mean, zero. 

Because only certain probabilities are quoted, we cannot usually find the 
exact probability associated with a particular value of t. For example, 
suppose we want to know the probability of t on 9 degrees of freedom being 
further from zero than 3. 7. From Table 10 . 1 we see that the 0 .0 1  point is 3 .25 
and the 0.00 1  point is 4. 78. We therefore know that the required probability 
lies between 0 .01  and 0.00 1 .  We could write this as 0.00 1  <p < 0.0 1 . Often 
the lower bound, 0.00 1 ,  is omitted and we write p < 0.0 1 .  With a computer it 
is possible to calculate the exact probability every time, so this common 
practice is due to disappear. 

The name 'Student's t Distribution' often puzzles newcomers to the 
subject .  It is not, as is often thought , an easy method suitable for students to 
use. The origin of the name is part of the folklore of statistics .  The distribu
tion was discovered by W. S .  Gossett, an employee of the Guinness brewery 
in Dublin . At that time, the company would not allow its employees to 
publish the results of their work, lest it should lose some commercial 
advantage. Gossett therefore submitted his paper under the pseudonym 
'Student' (Student 1 908). In this paper he not only presented the mathe
matical derivation of the distribution, but also gave the results of a sampling 
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Fig. 10.2 Sample t ratios derived from 750 samples of four human heights, after 
Student ( 1 908). 
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experiment l ike those described in Sections 4. 7 and 8 .2 .  He took the heights 
of 3000 criminals, wrote each on a piece of card, then drew 750 samples of 
size 4 to give 750 (x - µ)/-J(s2/n) statistics. Figure 1 0.2 shows the very good 
agreement which he obtained. 

10.2.  The one-sample t method 

We can use the t Distribution to find confidence intervals for parameters 
estimated from a small sample from a Normal Distribution .  We do not 
usually have small samples in sample surveys, but we often do find them in 
clinical studies . For example, we can use the t Distribution to find confidence 
intervals for the size of difference between two treatment groups, or between 
measurements obtained from subjects under two conditions . We shall deal 
with the latter, single-sample problem first. 

In general, for a sample from a Normal Distribution (.X - µ)/-J(s2/n) is 
from a t  Distribution with (n - 1) degrees of freedom . The population mean, 
µ ,  is unknown and we wish to know how far from the sample mean it is l ikely 
to be, using a 95 per cent confidence interval. We can see that, with pro
bability 0.95 , the difference between x and µ is at most t standard errors, 
where t is the value of the t Distribution such that 95 per cent of  observations 
will be closer to zero than t. For a large sample this will be 1 .96 as for the 
Normal Distribution . For · small samples we must use Table 1 0. 1 .  In this 
table, the probability that the t Distribution is further from zero than t is 
given, so we must first find one minus our desired probability 0 .95 .  We have 
1 - 0.95 = 0.05, so we use the 0.05 column of the table to get the value of t. 
We then have the 95 per cent confidence interval for µ,  which is 

x - t-Js2/n to x + t-Js2/n 

Consider the data of Table 1 0.2 .  These are results from a comparison of two 
instruments for measuring PEFR, a Wright Peak Flowmeter and a Mini Peak 
Flowmeter. The subjects were family and colleagues, and so not a random 
sample. Each gave two readings on each instrument in random order. Table 
10 .2  shows the second reading on each. We shall measure the amount of bias 
between the instruments, the amount by which one tends to read above the 
other. The first step is to find the differences (Wright - mini) . We then find 
the mean difference and its standard error, as described in Chapter 8 .  

To  find the 95  per cent confidence interval for the mean difference we  must 
suppose that the differences follow a Normal Distribution .  To calculate the 
interval ,  we first require the relevant point of the t Distribution from Table 
1 0. 1 .  There are 12 differences and hence (n - 1) = 1 1  degrees of freedom 
associated with s2 • We want a probability of 0.95 of being closer to zero than 
t, so we go to Table 10 .2 withp = 1 - 0 .95 = 0.05 . Using the JI d . f. row, we 
get t = 2 .20 .  Hence the difference between the sample and population 
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means is at most 2 . 20 standard errors with probability 0.95, and the 95 per 
cent confidence i nterval is - 1 7  .2 - (2. 20 x 1 1 . 6) to - 1 7  .2 + (2.20 x 1 1 . 6) 

= - 42. 7 to 8. 3 litre/min. (In the large sample case, we would use the Normal 
Distribution instead of the t Distribution, putting 1 .96 instead of 2 .20. We 
would not then need the differences to follow a Normal Distribution . )  

On the basis of these data, the mini-meter could tend to over-read by as 
much as 43 litre/min, or to under-read by as much as 8 litre/min. An error of 
43 litre/min is quite substantial, and we may have a problem . We would need 
a much larger sample to obtain a more precise estimate if we thought this were 
required. 

We can also use the t Distribution to test the null hypothesis that the mean 
difference is zero. If the null hypothesis were true, and the differences follow 
a Normal Distribution, the test statistic x/.J(s2/n) would be from a 
t Distribution with (n - I )  degrees of freedom .  This is because the null 
hypothesis is µ. = 0, hence the numerator x - µ. = x. 

For the example, we have 

- 1 7 .2  = - 1 .48 
1 1 .6 

I f  we go to the 1 1  d.f .  row of Table I O .  I ,  we find that the probability of 
such an extreme value arising is greater than O. IO ,  the O .  I O  point of the 
distribution being 1 . 80. Using a computer we would find p = 0. 1 7 .  The data 
are consistent with the null hypothesis and we have failed to demonstrate the 
existence of a bias . Note that the confidence interval is more informative than 
the significance test . 

We could also use the sign test to test the null hypothesis of no bias . This 
gives us 3 positives out of 1 1  differences (one difference, being zero, gives no 
useful information) which gives a two-sided probability of 0 .23 . This is 
greater than the t probability, but fairly similar. The t test gives the smaller 
probabil ity because, provided the assumption of Normality is true, the t test 
is the more powerful test. 

The validity of the methods described above depends on the assumption 
that the differences are from a Normal Distribution .  We can check the 
assumption of Normality by a Normal plot (Section 7 . 5) . Figure 10 . 3  shows a 
Normal plot for the differences and also for the Wright meter reading . The 
Normal plot for the differences deviates only slightly from a straight line, one 
point in particular, subject 1 1 ,  appearing rather out . The Wright meter 
readings show a clear kink in the line and are unlikely to be from a Normal 
Distribution . At first sight this is surprising , as we have remarked before that 
PEFR tends to be Normally distributed. However, this is not a sample from a 
population of similar age, or from the adult population in general . Most of 
these subjects were aged between 20 and 30 years, but subjects IO and 1 1  (my 
mother and mother-in-law ! )  were in an older age group and so produced 
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Fig. 10.3 Normal plots for the data of Table 1 0 . 2 .  

much lower PEFRs . Subject 1 1 , who also produced the difference of 103 
litre/min, was quite consistent in this . Her first pair of readings were 1 78 
litre/min (Wright) and 259 (minimeter) , which were very similar to those in 
Table 10.2 .  

Table 10.2. PEFR (litre/min) measured by Wright meter 
and mini-meter, female subjects 

Subject Wright PEFR Mini PEFR Difference 

1 490 525 -35  
2 397 4 1 5  - 1 8 
3 5 1 2 508 4 
4 40 1 444 - 43 
5 470 500 - 30 
6 4 1 5  460 - 45 
7 43 1 390 4 1  
8 429 432 - 3  
9 420 420 0 

I O  275 227 48 
I I  1 65 268 - 1 03 
1 2  42 1 443 - 22 

Sum x 4826 4996 - 206 
Mean x 402.2 4 1 9 .3  - 1 7 .2 
Sum of squares 
about the mean 
I(x; - x)2 99 2 1 5 .7 89 290.7 1 7  889.7 
Variance s2 9019.6 8 1 1 7 . 3  1 626.3 
se mean .Js2/n 27.4 26.0 1 1 .6 

Another plot which is a useful check here is the di fference against the sum 
or mean (Fig . 1 0 .4) .  If the difference depends on the mean, then we should be 
careful of drawing any conclusion about the mean difference. We may want 
to investigate this further, perhaps by looking at the ratio instead of the 
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Fig. 10.4 Plot of difference against mean for the data of Table 10 .2 .  

difference, or estimating the di fference as a function of the mean of the two 
measurements .  In this case the difference between the two readings does not 
appear to be related to the level of PEFR and we need not be concerned about 
this. 

Incidentally, we should be wary of drawing any conclusions about the Mini 
Wright Peak Flowmeter from this sample of one meter. It had been used in a 
field survey of wheezy children, being kept in their homes for periods of a 
fortnight (Johnston et al. 1 984) . It may well have been battered about a 
bit .  

Despite the clear non-Normality of the PEFR, the differences look like a 
fairly good fit to the Normal. There are two reasons for this : the subtraction 
removes variability due to age and height, leaving the measurement error 
which is more likely to be Normal , and the two measurement errors are then 
added, producing the tendency of sums to Normality seen in the Central 
Limit Theorem (Section 7 . 3 ) .  We can see that the assumption of Normality 
for the one sample case is quite likely to be met . We discuss this further in 
Section 1 0 . 5 .  When the one sample t test is used with differences, as in the 
PEFR meter example, it is also known as the paired t test. 

10.3.  The means of two independent samples 

Suppose-we have two samples from Normally distributed populations, with 
which we want to estimate the difference between the population means . We 
shall call the population means µ.1 and µ.2, the sample means .Y\ and .X2, the 
variances s12 and sl, and the sample sizes n ,  and n2• If  the samples were large, 
the 95 per cent confidence interval for the difference would be 

x, - x2 - 1 .96-Js,2/n, + slln2 to x, - x2 + 1 .96-Js,2/n , + s22/n2 
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Unfortunately, we cannot simply replace 1 .96 by a number from Table 10. 1 .  
This is because the standard error does not have the simple form described in 
10 .2 .  I t is not the square root of a constant times a sum of squares, but rather 
is the square root of the sum of two constants multiplied by two sums of 
squares . Hence, it does not follow the square root of the Chi-squared 
Distribution as required for the denominator of a t distributed random 
variable (Appendix 7 A) . 

In order to use the t Distribution we must make a further assumption 
about the data. Not only must the samples be from Normal Distributions , 
they must be from Normal Distributions with the same variance . This is not 
as unreasonable an assumption as it may sound. A difference in mean but not 
in variability is a common phenomenon. The PEFR data for children with 
and without symptoms analysed in Sections 8 . 5  and 9.7 show the charac
teristic very clearly. 

We now estimate the common variance, 52 • First we find the sum of squares 
about the sample mean for each sample, which we can label SS1 and SS2 • We 
form a combined sum of squares by SS1 + SS2• The sum of squares for the 
first group, SS1 ,  has (n1 - I) degrees of freedom and, for the second, SS2 has 
(n2 - 1) degrees of freedom . The total degrees of freedom is therefore 
(n1 - 1 + n2 - 1 )  = (n1 + n2 - 2) . We have lost 2 degrees of freedom 
because we have a sum of squares about two means .  The combined estimate 
of variance is 

52 = 

The standard error of x1 - .X2 is 

Now we have a standard error related to the square root of the Chi-squared 
Distribution and we can get a t distributed variable by 

x1 - x2 - (µ 1 - µ2) 

I 52 [-1 + _I ] 
� n1 n2 

having (n 1 + n2 - 2) degrees of freedom . We thus have the 95 per cent con
fidence interval for the difference between means as 

.X1 - .X2 - t-Js2( 1 /n 1  + l ln2) to x1 - x2 + t-J52( 1 /n 1 + 1 /n2) 

where t is the 0 .05 point with (n1 + n2 - 2) degrees of freedom from 
Table 1 0. 1 .  Alternatively, we can test the null hypothesis that the difference 
is zero, i .e .  that µ1 = µ2, using the test statistic 
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-Js2( l /111 + 1/112) 

which would follow the t Distribution with (n 1 + 112 - 2 d .f . )  if the null 
hypothesis were true. 

For a practical example, Table 1 0. 3  shows the data for male subjects cor
responding to that in Table 10 .2 .  We shall estimate the difference between the 
biases (i .e .  mean difference between Wright and mini-meter) for females and 
males. We have already noted the approximate Normality of the differences. 
We must now consider the similarity of their variances . I t is clear that the 
variance for the males is much smaller than that for females , and the 
assumption that in the populations the variances are the same is in question . 
However, the disparity is not too great to be due to chance, as can be shown 
using the F test or Levene test (beyond the scope of this book; see Armitage 
1 973;  Snedecor and Cochran 1 980). We shall accept it for the moment and 
consider its effect later. 

Table 10.3. PEFR (litre/min) measured by Wright meter 
and mini-meter, male subjects 

Subject Wright PEFR 

1 3  6 1 1 
14  638 
1 5  633 
1 6  492 
1 7  372 

Sum I.x; 2746 
Mean .f 549.2 
Sum of squares 
about the mean 
I(x; - x)2 53 398.8 
Variance s' 1 3  349 .7  
se mean .Js'ln 5 1 .7 

Mini PEFR 

625 
642 
605 
467 
370 

2709 
54 1 .8 

56 066.8 
14 0 16 .7  

52.9 

Di fference 

- 1 4 
- 4  
28 
25 

2 

37 
7.4 

1 35 1 .2 
337 .8 

8 .2  

First we find the common variance estimate, s2 . The combined sum of  
squares about the sample means is 

1 7889 .7 + 1 35 1 .2 = 1 9240 .9 

The combined degrees of freedom are 

111 + 112 - 2 = 1 2  + 5 - 2 = 1 5  

Hence 

s2 = 1 9240.9/ 1 5  = 1282 .73 



The use of transformations 

The standard error of (£1 - x2) is 

.Js2( 1 /n 1  + l ln2) = ,J1282. 73( 1 / 1 2  + 1 15) = 1 9 .06 
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The value of the t Distribution for the 95 per cent confidence interval is 
found from the 0 .05 column and 1 5  d. f. row of Table I 0. 1 to be 2 . 1 3 .  Hence 
the 95 per cent Confidence interval is 

x1 - x2 - 1.Js2( l /11 1 + 1 /n2) ta x, - x2 + 1.Js2( l ln 1  + 1 1112) 
- I 7 . 2 - 7 .4 - 2 .  I 3 x I 9. 06 to - I 7. 2 - 7 .4 + 2. 1 3  x I 9. 06 
- 65 . 2  to 1 6 .0 litre/min 

Hence there could be quite a large difference between the response of males 
and females , from this very small sample, or there may be none at al l .  

To test the null hypothesis that the male-female di fference is zero , the test 
statistic is 

- 1 7 .2 - 7.4 
1 9 .06 

- 1 .29 

I f  the null hypothesis were true, this would be an observation from the 
t Distribution with (n1 + n2 - 2) = 1 2  + 5 - 2 = 1 5  degrees of freedom. 
From Table 10 . 1 ,  the probability of such an extreme value is greater than 
0. 1 0 . The computer gives a probability of0 .22. Hence the data are consistent 
with the null hypothesis and we cannot conclude that the bias is di fferent for 
males and females . Again, we can see the advantage which estimation by 
confidence interval has over signi ficance tests . 

What happens if we do not make the assumption of uniform variance? 
There is an approximate solution based on the t Distribution (e .g .  see Davies 
and Goldsmith 1 972; Snedecor and Cochran 1 980) using the standard error 
formula of Section 8 . 5 ,  .J[s1 2/n 1 + s/ln2] .  For our data this standard error is 
14 .3 . The difference between the variance leads to a rather complicated 
reduction in the degrees of freedom, in this case to 14 .  For this example we 
obtain a confidence interval of - 55 . 1  to 6.0 litres/min, or a t  test statistic of 
- 1 .7 with 14 degrees of freedom, p = 0. 1 1 . This is similar to what we 
obtained by the standard method. There are other approaches based on the 
t test (see Armitage 1 973) .  Another approach is to abandon the use of 
variance altogether and use the Mann-Whitney U test described in 
Section 1 2 . 2 .  We shall look at these data again in Chapter 1 5 .  

10.4. The use of transformations 

We have already seen (Section 7 .4) that some variables which are not 
Normally distributed can be made so by a suitable transformation. There are 
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Table 10.4. Biceps skinfold thickness (mm) in two groups of patients 

Crohn's disease Coeliac disease 

1 .8 4 .2  1 .8 
2 .2  4 .4  2 .0  
2 .4  4 .8 2 .0  
2 . 5  5 .6  2 .0  
2 .8  6 .0 3 .0 
2 .8  6 .2  3 . 8  
3 . 2  6 .6 4.2 
3 .6 7 .0 5.4 
3 . 8  10.0 7.6 
4 .0 10 .4 

several transformations that can be used for this purpose . The most 
commonly used is the logarithm, which is suitable for data which are quite 
highly skewed . This works when the standard deviations of different samples 
from the population are proportional to their means . A typical variable for 
this treatment is the serum triglyceride of Figs 7 . 1 5 and 7 . 1 6  and this is often 
true of such serum measurements. The square root transformation is useful 
when data are not so highly skewed and when the variance of a sample is 
proportional to its mean . Poisson variables have this property, for example. 
The reciprocal can be used when the standard deviation is proportional to the 
square of the mean, and data are very highly skewed indeed . Survival times 
tend to behave like this . 

In large data sets ,  there are fairly good methods of determining the 
appropriate transformation (see Healy 1 968, for a readable account) .  For 
small samples it is a matter of experience, trial and error. Table 1 0.4 shows 
some data from a study of anthropometry and diagnosis in patients with 
intestinal disease (Maugdal et al. 1 985). We are interested in the differences in 
various anthropometrical measurements in patients with different diagnoses , 
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and here we have t he biceps skinfold measurements for 20 patients with 
Crohn's disease and 9 patients with coeliac disease. The data have been put 
into order of magnitude and it is fairly obvious that the distribution is skewed 
and far from Normal . Figure 1 0. 5  shows this clearly. I have subtracted the 
group mean from each observation, giving what is called the within-group 
residual , and then found both the frequency distribution and Normal plot. 
The distribution is clearly skew, and this is reflected in the Normal plot, 
which shows a pronounced curvature. 
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Fig. 10.6 Histogram and Normal plot for the biceps skinfold data, log 
transformed. 

We need a Normalizing transformation, if one can be found. The first 
guess is the log transform, and Fig. 10 .6 shows the histogram and Normal 
plot for the residuals after transformation. (These are logarithms to base 1 0. )  
The fit to the Normal Distribution i s  not perfect, but much better than in 
Fig . 1 0 . 5 .  We could use the two sample t method on these data quite happily. 
Compare Fig . 1 0. 7 ,  which shows the result of a square root transformation . 
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Fig. 10.7 Histogram and Normal plot for the biceps skinfold data, square root 
transformed. 
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Fig. 10.8 Histogram and Normal plot for the biceps skinfold data, reciprocal 
transformed. 

The skewness is still apparent though less than in the untransformed data. 
Figure 1 0. 8  shows the results of the reciprocal transformation. The results 
are if  anything marginally worse than those for the log transformation, 
though it is not easy to choose between them. In practice I would probably 
select the log transformation, as the resulting statistics are easier to interpret . 
The reciprocal transformation changes the sign of the difference, for 
example. 

Table 1 0. 5  shows the results of the two sample t method used with the raw, 
untransformed data and with each transformation. The t test statistic 
increases and its associated probability decreases as we move closer to a 
Normal Distribution, reflecting the increasing power of the t test as its 
assumptions are more closely met . Table 10 .5  also shows the ratio of the 
variances in the two samples. We can see that , as the transformed data get 
closer to Normality, the variances tend to become more equal also. 

The transformed data clearly give a better test of significance than the raw 
data. The confidence intervals for the transformed data are more difficult to 
interpret , however, so the gain here is not so apparent. The confidence limits 

Table 10.5. Biceps skinfold thickness compared for two groups of patients, using 
different transformations 

Transformation 

None, raw data 
Square root 
Logarithm 
Reciprocal 

Test of significance, 
I Distribution, 27 d . f. 

I statistic probability 

l .28 
1 .38 
l .48 

- 1 .65 

0 .2 1  
0. 1 8  
0 . 1 5  
0 . 1 1  

95 per cent confidence 
interval for difference on Variance ratio,  
transformed scale larger /smaller 

-0 .7 1  mm to 3 .07 mm 
- 0. 1 40 to 0 . 7 14  
- 0.050 to  0 .307 
- 0.203 to 0.022 

l .52 
l . 1 6  
1 . 1 0 
1 .63 
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for the difference cannot be transformed back to the original scale. I f  we try 
it, the square root and reciprocal limits give ludicrous results. The log gives 
interpretable results (0.89-2.03) but these are not limits for the difference in 
millimetres .  How could they be ,  for they do not contain zero yet the dif
ferences is not significant? They are in fact the 95 per cent confidence limits 
for the ratio of the Crohn's  disease mean to the coeliac disease mean . If  there 
were no di fference, of course, the expected value of this ratio would be one, 
not zero , and so lies within the limits. The reason is that when we take the dif
ference between the logarithms of two numbers , we get the logarithm of their 
ratio, not of their difference (Appendix SA) . However, when we take the 
mean of the logarithms of several numbers, we do get the logarithm ofa  mean 
of sorts , the geometric mean. The geometric mean of n numbers is the nth 
root of their product . 

10.5 .  Deviations from the assumptions of Normality and 
uniform variance 

The methods described in this chapter depend on some strong assumptions 
about the distributions from which the data come. This often worries users of 
statistical methods, who feel that these assumptions must limit greatly the use 
of t Distribution methods and find the attitude of many statisticians, who 
often use methods based on Normal assumptions almost as a matter of 
course, rather sanguine. We shall look at some consequences of deviations 
from the assumptions. 

First we shall consider non-Normality. As we have seen, some variables 
conform very closely to the Normal Distribution; others do not . Deviations 
occur in two main ways : grouping and skewness. 

Grouping occurs when a continuous variable, such as human height , is 
measured in units which are fairly large relative to the range. This happens, 
for example, if we measure human height to the nearest inch . The heights in 
Fig. 1 0 .2  were to the nearest inch, and the fit to the t Distribution is very 
good . This was a very coarse grouping, as the standard deviation of heights 
was 2 . 5  inches and so 95 per cent of the 3000 observations had values over a 
range of 1 0  inches , only 1 0  or 1 1  possible values in all . We can see from this 
that if  the underlying distribution is Normal , rounding the measurement is 
not going to affect the application of the t Distribution by much . 

Skewness, on the other hand , can invalidate methods based on the 
t Distribution.  For small samples of highly skew data, the t Distribution does 
not fit the distribution of (x - µ)/;/(s2/n) at all wel l .  Figure 1 0 . 9  shows the 
results of a computerized repetition of Student ' s  experiment (Fig . 10 .2) ,  
using random data from a highly skewed distribution. The fit is quite poor. 
The sampling distribution is skewed , the left tail being shorter and the right 
longer than for the I Distribution . This is because the mode, the place where 
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Fig. 10.9 Sampling experiment on the one-sample t statistic from a highly 
skewed population distribution. 

observation is most frequent for the distribution of the data, is not close to 
the population mean. We may get a sample of observations all close to the 
mode, hence having a small standard deviation but a large (x - µ), and so a 
large t ratio . The solution is to use a transformation to Normaljty, such as the 
logarithm . If this does not work, then we must turn to methods which do not 
require a Normal assumption. The sign test is one possibility . Others are 
described in Chapter 1 2. 

Skewness is much more likely to arise in two-sample problems, because we 
do not have the Normalizing effect of differences described in Section 1 0.2 .  
I t  also affects the two-sample t statistic of Section 10 . 3 .  Figure 1 0. 1 0  shows 
the distribution of 750 two-sample t statistics obtained by drawing pairs of 
samples of three-observations from the highly skewed population of 
Fig. 1 0.9 .  Two samples of size three give a t statistic with 4 degrees of 
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Fig. 10.10 Sampling experiment on the two-sample t statistic from a highly 
skewed population distribution, equal samples. 
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Fig. 10.11 Sampling experiment on the two-sample t statistic from a highly 
skewed population distribution, unequal samples. 

freedom. The fit to the t Distribution is remarkably good and in general for 
two equal-sized samples the t method is very resistant to deviations from 
Normality. As the samples become less equal in size the fit becomes less good. 
Figure 1 0. 1 1  shows what happens when we have the difference between a 
mean of 3 and a mean of 6. The fit is not as good as in Fig. 1 0 . 1 0, but still con
siderably better than in Fig . 1 0.9 .  We can see that even large departures from 
Normality are not too upsetting to the two-sample t method . This means that 
we need not worry about small departures from Normality. If  there is an 
obvious departure from Normality, we should try to transform the data to 
Normality and then apply the t Distribution. If  we can't do this we must use a 
different approach to the data as described in Section 12 .2 .  

The other assumption of the two-sample t method i s  that the variances in  
the two populations are the same. If  this i s  not correct, the t Distribution will 
not necessarily apply. However, the effect is usually small i f  the two popula
tions are from a Normal Distribution. Figure 10 . 1 2  shows the two sample 
t statistic for samples size 3 and 6, and for sizes 6 and 3, where the variance of 
the second is four t imes that of the first .  However, it is unusual to have 
unequal variances with Normal data. Unequal variance is more often asso
ciated with skewness in the data, in which case a transformation designed to 
correct one fault often tends to correct the other as wel l .  

To sum up, both the one- and two-sample t methods are said to be ' robust' 
to most deviations from the assumptions . In other words, only large devia
tions are going to have much effect on the method . The main problem is with 
skewed data in the one sample method, but for reasons given in Section 10 .2 ,  
the paired test will usually provide differences with a reasonable distribution . 
I f  the data do appear to be non-Normal, then a Normalizing transformation 
will improve matters. 
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Fig. 10.12 Sampling experiments on the two-sample t statistic from Normal 
populations with unequal variances, samples size 3 and 5.  (a] larger sample has 
larger variance, (b) smaller sample has larger variance. 

If the assumptions are not met and the data cannot be transformed , all is 
not lost . In the unusual case of populations which are Normal with variances 
which cannot be assumed to be the same, there is an approximate t method 
using the formula of 8 . 5 ,  as we noted in Section 10 . 3 .  We shall discuss an 
alternative approach which requires no assumption of Normality in 
Chapter 12 .  

10.6.  What is a large sample? 

In this chapter we have looked at small-sample versions of the large-sample 
methods of Sections 8 . 5  and 9. 7. In Sections 8 . 5  and 9. 7 we ignored both the 
distribution of the variable and the variability of s2, on the grounds that they 
did not matter provided the samples were large. How small can a large sample 
be? This question is critical to the validity of these methods, but seldom seems 
to be discussed in textbooks . 

Provided the assumptions of the t test apply, the question is easy enough to 
answer. Inspection of Table I 0. 1 will show that for 30 degrees of freedom the 
5 per cent point is 2 .04, which is so close to the Normal value of I .  96 that it 
makes little di fference which is used . So for Normal data with uniform 
variance we can forget the t Distribution when we have more than 30 
observat ions . 

When the data are not in this happy state, things are not so simple. Figure 
I 0. 1 3  shows one sample t statistics from the highly skewed distribution of 
Fig . 10 .9 .  When we have samples of size 30, the fit to the Normal 
Distribution is quite poor. The sampling distribution of the I statistic is 
noticably skew, in this case to the left .  Even a sample of size 1 00 appears to 
deviate from the Normal, though in this case not by much . Although there is 
still some skewness present the proportion of mean/standard error ratios 
outside the - 2 to + 2 interval is 4. 7 per cent , so here the use f the Normal 
approximation will not lead us far astray. 
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Fig. 10.13 Sample mean - population mean over standard error for 750 
samples from a skewed population, sample sizes 30 and 100. 

For two sample comparisons, things are better. We have already seen that 
equal-sized samples give a remarkably good fit to the t Distribution . Figure 
10 . 1 4  shows the sampling distribution for the difference between means of 
sample size 10 and size 20, divided by the standard error . The standard error 
used is that of Section 8 . 5 ,  with separate variances. As we might expect from 
the previous section,  the fit here is better than for the single sample, but there 
is still room for improvement . For samples of size 33 and 67 the fit is quite 
good. 

Of course, it would be a mistake to draw any strong conclusions from so 
few simulations, but they do illustrate a few principles. First, if in doubt , 
treat the sample as small . Secondly, transform to Normality if possible, espe
cially in the one-sample case. In the one"sample case it is easy to transform 
estimates of confidence limits, etc .  back to the original scale anyway. 
Thirdly, the more non-Normal the data, the larger the sample needs to be 
before we can ignore errors in the Normal approximation. 

There is no simple answer to the quest ion : 'how large is a large sample? ' .  I f  
we want a rough guide, we should b e  reasonably safe with inferences about 
means if the sample is greater than 100 for a single sample, or if both samples 
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Fig. 10.14 Difference between means over standard error for 750 samples from 
a skewed distribution, sample sizes 10 and 20 and sample sizes 33 and 67 .  
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are greater than 50 for two samples. We can see that the application of 
statistical methods is a matter of j udgment as well as knowledge. 

10A. Appendix 

Why the mean/standard error follows the t Distribution 

The t Distribution for the ratio 'mean over standard error' arises as follows . 
We know that x has a Normal Distribution with mean µ and variance u2/n. 
Hence (x - µ)/.J(a2/n) wil l be Normal with mean 0 and variance I .  The 
distribution of (n - l )s2/ a2 is Chi-squared with (n - I) degrees of freedom 
(Appendix 7 A). If we divide a Standard Normal variable by the square root 
of an independent Chi-squared variable over its degrees of freedom, we get 
the t Distribution : 

x - µ  
.Ju2/n 

. / (n - l )s2/ a2  
IJ n - I 

x - µ  
.J a2/ n 

fS2 IJ � 
x - µ  

x - µ � �2 52 
- x 
n a2 

As if by magic, we have our sample mean over its standard error. We shall not 
bother to go into this detail for the other simi lar ratios which we shall 
encounter. Any Normally distributed quantity with mean zero (such as 
x - µ), divided by its standard error, will follow a t  Distribution provided the 
standard error is based on one sum of squares and hence is related to the Chi
squared Distribution. 

Exercise 1 0M 

(Each branch is either true of false. )  

1 .  The paired t test is: 
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(a) impractical for large samples; 

(b) useful for the analysis of qualitative data; 

(c) suitable for very small samples ; 

(d) used for independent samples ; 

(e) based on the Normal Distribution . 

185 

2 .  Which of t h e  following conditions must b e  met for a valid t test between 

the means of two samples: 

(a) the numbers of observations must be the same in the two groups; 

(b) the standard deviations must be approximately the same in the two 
groups; 

(c) the means must be approximately equal in the two groups; 

(d) the observations must be from approximately Normal Distributions; 

(e) the samples must be small . 

3. In a two-sample clinical trial, one of the outcome measures was highly 

skewed. To test the difference between the levels of this measure in the 

two groups of patients, possible approaches include: 

(a) a standard t test using the observations; 

(b) a Normal approximation if the sample is large; 

(c) transforming the data to Normality and using a t  test; 

(d) a sign test; 

(e) the standard error of the difference between two proportions . 

4. In the two-sample t test, deviation from the Normal Distribution by the 

data may seriously affect the validity of the test if: 

(a) the sample sizes are equal ; 

(b) the distribution followed by the data is highly skewed; 

(c) one sample is much larger than the other; 

(d) both samples are large; 

(e) the data deviate from Normality because the measurement unit is large 
and only a few values are possible. 

5. If we take samples of size n from a Normal Distribution and calculate the 

sample mean x and variance s2:  

(a) samples with large values of x will tend to have large s2; 

(b) the sampling distribution of x will be Normal ; 
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(c) the sampling distribution of s2 will be related to the Chi-squared 
Distribution with (n - I )  degrees of freedom; 

(d) the ratio xl--i(s2/n) will be from a t  Distribution with (n - l) degrees of 
freedom; 

(e) the sampling distribution of s will be approximately Normal i f  n > 20. 

Exercise 1 0E 

Table I OE .  I shows the total static compliance of the respiratory system and 
the arterial oxygen tension (p.(02)) in I 6 patients in intensive care (Al-Saady, 
personal communication) . The patients' breathing was assisted by a 
respirator and the question was whether their respiration could be improved 
by varying the characteristics of the air flow. Table l OE . I compares a 
constant inspiratory flow waveform with a decelerating inspiratory flow 
waveform. In this exercise we shall examine the effect of waveform on P.(02) 
and compliance . 

Table lOE.1 .  p3(02) and compliance for two inspiratory flow 
waveforms 

P.(02) (kPa) Compliance (ml/cm 
Hp) 

Patient Constant Decelerating Constant Decelerating 

I 9 . l  10 .8 65.4 72.9 
2 5 .6  5 .9  73 .7 94.4 
3 6.7 7 .2 37.4 43 .3  
4 8. I 7 .9 26.3  29.0 
5 1 6 .2 1 7 .0 65.0 66.4 
6 I 1 .5 I l .6 35 .2  36.4 
7 7 .9  8 .4  24.7 27.7 
8 7 .2 1 0.0 23 .0 27.5 
9 1 7 . 7  22 .3  1 33 .2 1 78 .2  

I O  10 .5  I l .  I 38.4 39.3  
I l  9 .5  I I . I  29.2 3 1 .8 
1 2  1 3 . 7 l l .7 28.3 26.9 
1 3  9 .7  9.0 46.6 45 .0 
14  10 . 5  9 .9  6 1 . 5  58.2 
1 5  6.9 6.3 25 .7 25 . 7  
1 6  1 8 . l  1 3 .9 48. 7  42.3  

I .  Calculate the changes in p.(02) .  Find a stem and leaf plot . (Hint: you 
will need both a zero and a minus zero row) . Do the differences appear close 
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enough to the Normal Distribution to apply a t  Distribution method? I f  not , 
try a transformation. 

2 .  Calculate the mean, variance, standard deviation and standard error of 
the mean for the p.(02) differences . 

3 .  Calculate a 95 per cent confidence interval for the mean difference. Do 
you think there is any effect onp.(02)? 

4. As a check on the validity of the t method, plot the difference against 
the mean of p.(02) .  Do they appear to be related? 

5. Calculate the differences for compliance. Find a stem and leaf plot 
(only using the figures before the decimal point) and plot the difference 
against the IT'ean . 

6. Calculate mean, variance, standard deviation and standard error of the 
mean . 

7 .  Even though the compliance differences are far from a Normal 
Distribution, calculate the 95 per cent confidence interval using the 
t Distribution . We shall compare this with that for transformed data. 

8. Find the logarithms of the compliance and repeat step 5 .  Do the 
assumptions of the t Distribution method apply more closely? 

9. Calculate the 95 per cent confidence interval for the log difference and 
transform back to the original scale. What does this mean and how does it 
compare to that based on the untransformed data? 

10 .  What can be concluded about the effect of inspiratory waveform on 
p.(02) and compliance in intensive care patients? 



1 1 .  Regression and 
correlation 

1 1 . 1 .  Scatter diagrams 

In this chapter we shall look at methods of analysing the relationship between 
two quantitative variables . Consider Table I I .  I ,  which shows data collected 
by a group of medical students in a physiology class . Inspection of the data 
suggests that there may be some relationship between FEV I and height . 
Before trying to quantify this relationship, we can plot the data and get an 
idea of their nature. The usual first plot is a scatter diagram (Section 5 .7) .  
Which variable we choose for which axis depends on our ideas as to the 
underlying relationship between them, as discussed below . Figure I I .  I shows 
the scatter diagram for FEV I and height . 

I nspection of Fig. I I .  I suggests that FEV I increases with height . The next 
step is to try and draw a line which best represents the relationship .  The 
simplest line is a straight one; we shall consider more complicated relation
ships later . 

The equation of a straight-line relationship between variables x and y is 
y = a + bx, where a and b are constants .  I n  coordinate geometry this is often 
written as y = mx + c, but in statistics a and b are conventional symbols for 
the.coefficients . The first, a, is called the intercept. It is the value of y when x 
is 0. The second, b, is called the slope or gradient of the line. Their geome-

Table 1 1 . 1 .  FEVl and height for 20 male medical students 

Height FEV I  Height FEY !  
(cm) (litre) (cm) (litre) 

1 74.0 4.32 1 67.0 3 .54 
180.7 4 .80 1 7 1 .2 3 .42 
1 83 . 7  4.68 1 77 .4 3 .60 
1 77 .0 5 .43 1 7 1 .3 3 .20 
177 .0 3 .09 1 83 .6 4.56 
1 72.0 3 .78 1 83 . 1  4.78 
1 76.0 3 .75 1 72.0 3 .60 
1 77 .0 4.05 1 8 1 .0 3 .96 
1 64.0 3 .54 1 70.4 3 . 1 9  
1 78 .0  2 .98 1 7 1 .2 2 . 85 
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Fig. 11 .1  Scatter diagram showing the relationship between FEVl and height 
for a group of male medical students. 

trical meaning is shown in Fig. 1 1 .2 .  We can find the values of a and b which 
best fit the data by regression analysis . 

1 1 .2.  Regression 

Regression is a method of estimating the numerical relationship between vari
ables . For example, we would like to know what is the mean or expected 
FEY I for students of a given height , and what increase in FEY I is associated 
with a unit increase in height . 

The name ' regression' was given by Gal ton (1 886), who developed the tech
nique to investigate the relationship between the heights of people and the 
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heights of their parents. He observed that if we choose a group of parents of a 
given height, the mean height of their children will be closer to the mean 
height of the population than is the given height . In other words, tall parents 
tend to be talfer than their children, short parents tend to be shorter. Galton 
termed this phenomenon 'regression ' ,  meaning 'going back' .  It is now called 
regression towards the mean . The method used to investigate it was called 
regression analysis and the name has stuck. However , in Galton's ter
minology there was 'no regression' if the relationship between the variables 
was such that one predicted the other exactly; in modern terminology there is 
no regression if the variables are not related at all . We have a reversal of 
meaning. 

In regression problems we are interested in how changes in one variable are 
related to changes in another. In the case of FEVI and height , for example, 
we are concerned with how FEVI changes with height rather than how height 
changes with lung function . We have two kinds of variables : the predictor 
variable, in this case height, and the outcome variable which it predicts ,  in 
this case FEVI .  The predictor variable is often called the independent vari
able and the outcome variable is called the dependent variable. However, 
these terms have other meanings in probability theory, already mentioned in 
Chapter 6 ,  so we shall not use them. I f  we denote the predictor variable by X 
and the outcome by Y, the relationship between them may be written as 

Y = a +  bX + E 

where a and b are constants and E is a random variable with mean 0, called 
the error, which represents that part of the variability of Y which is not 
explained by the relationship with X. If  the mean of E were not zero , we could 
make it so by changing a. 
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1 1 .3.  The method o f  least squares 

I f  the points all lay along a line and there is no random variation, it would be 
easy to draw a line on the scatter diagram (Fig. I I .3) . In Fig. I I .  I this is not 
the case. There are many possible values of a and b which could represent the 
data and we need a criterion for choosing the best line. 

Figure I I .4  shows the deviation of a point from the line, the distance from 
the point to the line in the Y direction . The line will fit the data well if the 
deviations from it are small, and will fit badly if they are large. These devia
tions represent the error E, that part of the variable Y not explained by X. 
One solution to the problem of finding the best line is to choose that which 
leaves the minimum amount of the variability of Y unexplained, by making 
the variance of E a  minimum. This will be achieved by making the sum of 
squares of the deviations about the line a minimum. This is called the method 
of least squares and the line found is the least-squares line. 
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Fig. 1 1 .4 Deviations from the line in the y direction. 

The method of least squares is the best method if the deviations from the 
line are Normally distributed with uniform variance along the line. This is 
l ikely to be the case, as the regression tends to remove from Y the variability 
between subj ects and leave the measurement error, which is likely to be 
Normal . We observed the same process in the paired t method of Section 
1 0.2 .  We shall deal with deviations from this assumption later in the chapter. 

Many users of statistics are puzzled by the minimization of variation in one 
direction only. Usually both variables are measured with some error and yet 
we seem to ignore that in X. Why not minimize the perpendicular distances to 
the line rather than the vertical , as shown in Fig. 1 1 . 5?  There are two reasons 
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Fig. 11 .5  Deviations perpendicular to the line. 

for this . First , we are finding the relationship between the observed values of 
X and Y, not their ' true' values. The measurement error in both variables is 
one of the causes of deviations from the line, and is included in these devia
tions measured in the Y direction. Secondly the line found in this way 
depends on the units in which the variables are measured. We need not 
burden the reader with the details of unsound methods of analysis; we need 
only to note that for the data of Table 1 1 . 1  the line found by this method is 

FEV l = - 9.33 + 0.075 x height 

If we measure height in metres instead of centimetres, we get 

FEV l = - 34.70 + 22.0 x height 

Thus by this method the predicted FEV 1 for a student of height 1 70 cm is 
3 .45 litres, but for a student of height 1 .70 m it is 2 .70 litres. This is clearly 
unsatisfactory and we shall not consider this approach further . 

Returning to Fig . 1 1 .4, the equation of the line which minimizes the sum of 
squared deviations from the line in the outcome variable is found quite easily. 
The derivation , which involves some simple calculus, is given in Appendix 
l l A. The solution is :  

b = L (X; - X) (Y; - y) 
L: (x; - .f)2 

LX;LY; LX;Y; -
n 

L:x 2 -
(L:x;)2 

I 
n 



The method of least squares 

sum of products about the mean of X and Y 
sum of squares about the mean of X 

We then find the intercept a by 

a =  y - bx 

1 93 

Notice that the line has to go through the mean point, (x, j) . The sum of pro
ducts about the mean is similar to the sum of squares about the mean derived 
in Section 4 .6 .  The second form, which is easier for calculator work, is found 
in the same way. We shall say more about the properties of the sum of pro
ducts, as it is usually termed, when we discuss correlation. Fitting a straight 
line by this method is called simple linear regression. 

The equation Y = a + bX is called the regression equation of Y on X, Y 
being the outcome variable and Xthe predictor. The gradient, b, is also called 
the regression coefficient. We shall calculate it for the data of Table 1 1 . 1 .  We 
have 

LX; = 3507 . 6  
LY; = 77 . 1 2  

x =  3507.6/20 = 1 75 . 38 
j = 77 . 1 2/20 = 3 . 856 

LX;2 = 61 5739.24 
LY? = 306 . 8 1 34 

n = 20 
LX;Y; = 1 3568 . 1 8  

o;xy sum of squares X = LX;2 - --
n 

3507 .62 
= 6 1  5739.24 - ---

20 
= 576.32 

(Ly;)2 
sum of squares Y = LY? -

--n 
77 . 1 22 

= 306. 8 1 34 - 20 
= 9 .43868 

�X;LY; 
sum of products about mean = LX;Y; - ---

n 
3507 .6 x 77 . 1 2  

= 1 3568 . 1 8  - ------

20 
= 42. 8744 

We do not need the sum of squares for Y yet, but we shall later. 
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sum of products about the mean of X and Y 
b =------------------

sum of squares about the mean of X 

42. 8744 
576 .352 

= 0.074389 litre/cm 
a = f - bx 

= 3 . 856 - 0.074389 x 175 .38 
= - 9. 1 9  litre 

Hence the regression equation of FEY I on height is 

FEV l = - 9 . 1 9  + 0.0744 x height 

Figure 1 1 .6 shows the line drawn on the scatter diagram. The coefficients a 
and b have dimensions, depending on those of X and Y. I f  we change the 
units in which X and Y are measured we also change a and b, but we do not 
change the line. For example, if height is measured in metres we divide the X; 
by 1 00 and we find that b is multiplied by 1 00 to give b = 7 .4389 litre/m. The 
line is 

FEV l (litre) = - 9. 1 9 + 7 .44 x height (m) 

This is exactly the same line on the scatter diagram. 
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Fig. 11.6 The regression of FEVl on height. 

1 1 .4. The regression of X on Y 
What happens if we change our choice of outcome and predictor variables? 
The regression equation of height on FEVl is 
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height = 1 58  + 4.54 x FEV l 

This is not the same line as the regression of FEV 1 on height . For if we 
rearrange this equation by dividing each side by 4.54 we get 

0 .220 x height = 34.8 + FEVl 

or 

FEVl = - 34.8 + 0.220 x height 

The slope of the regression of height on FEV 1 is greater than that of FEV 1 on 
height (Fig . 1 1 .  7) .  In general , the slope of the regression of X on Y is greater 
than that of Y on X, when X is the horizontal axis .  Only if all the points lie 
exactly on a straight line are the two equations the same. This has implica
tions for the choice of outcome variable, which we will consider later . 
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Fig. 11 .  7 The two regression lines. 

1 1 . 5 .  The standard error of the regression coefficient, b 
In any estimation procedure, we want to know how reliable our estimates are. 
We do this by finding their standard errors and hence confidence intervals . 
We can also test hypotheses about the coefficients, for example, the null 
hypothesis that b = 0 and there is no linear relationship .  The details are given 
in Appendix 1 l A.2 .  

We first find the sum of squares of the deviations from the line, that is ,  the 
difference between the observed Y; and the values predicted by the regression 
line. This is 
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L (y; - y)2 is of course the total sum of squares about the mean of Y; · The term 
b2 L (x; - x)2 is called the sum of squares due to the regression on X. The dif
ference between them is the residual sum of squares or sum of squares about 
the regression.  The sum of squares due to the regression divided by the total 
sum of squares is called the proportion of variability explained by the 
regression. 

In order to estimate the variance we need the degrees of freedom with 
which to divide the sum of squares. We have estimated not one parameter 
from the data, as for the sum of squares about the mean (Section 4.6) , but 
two, a and b. We lose two degrees of freedom, leaving us with (n - 2). Hence 
the variance of Y about the line, called the residual variance, i 

For the FEY 1 data we have 

1 
S2 = 

20 - 2 
{9 .43868 - 0 .0743892 x 576.352} 

1 = - x 6 .2493 
1 8  

= 0.347 1 8  

The standard error o f  b i s  given by 

se(b) = � L (X;
s� x)2 

0.347 1 8  
576 .352 

= 0.02454 litre/cm 

Now, we have already assumed that the error E is Normally distributed , so 
b must be, too . The standard error is based on a single sum of squares, and we 
can see that b!se(b) is an observation from the t Distribution with (n - 2) 
degrees of freedom. Hence we can find a 95 per cent confidence interval for b 
by taking t standard errors on either side of the estimate . 

For the example, we have 1 8  degrees of freedom. From Table 1 0 . 1 ,  the 5 
per cent point of the t Distribution is 2 . 1 0, so the 95 per cent confidence 
interval for b is b ± t x Se(b...) 

0 .074389 - (2 . 1 0 x 0.02454) to 0 .074389 + (2 . 1 0 x 0.02454) = 0.022848 to 0. 1 2593 

or 0.02 to 0. 1 3  litre/cm, rounding off all the meaningless digits .  We can see 
that FEY 1 and height are related , though the slope is not very well estimated . 
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Alternatively, we can test the null hypothesis that b = 0 against the alterna
tive that b is not equal to 0, a relationship in either direction . The test statistic 
is b/se(b) and if the null hypothesis is true this will be from a t  Distribution 
with (n - 2) degrees of freedom . 

For the example, 

b 
t = --

se(b) 

0.074389 
0.02454 

= 3 .03 

From Table 1 0. 1 this has two-tailed probability of less than 0.0 1 . The com
puter tells us that the probability is about 0.007. Hence the data are incon
sistent with the null hypothesis and the data provide fairly good evidence that 
a relationship exists. 

If the sample were much larger, we could dispense with the t Distribution 
and use the Standard Normal Distribution in its place. 

1 1 .6. Using the regression line for prediction 

We can use the regression equation to predict the mean or expected Y for 
any given value of X. This is called the regression estimate of Y. We can use 
this to say whether any individual has an observed Y greater or less than 
would be expected given X. For example, the predicted FEV l for students 
with height 1 77 cm is - 9. 1 9  + 0. 744 x 1 77 = 3 .98 litres . Three subjects 
had height 1 77 cm . The first had observed FEV l of 5 .43 litres , 1 .45 litres 
above that expected . The second had a rather low FEV l of 3 .09 litres, 
0 .89 litres below expectation, while the third with an FEV 1 of 4.05 litres was 
very close to that predicted. We can use this clinically to adjust a measured 
lung function for height and thus get a better idea of the patient ' s  status . 
We would,  of course, use a much larger sample to establish a precise esti
mate of the regression equation. We can also use a variant of the method to 
adjust FEV l for height in comparing different groups, where we can both 
remove variation in FEV 1 due to variation in height and allow for differences 
in mean height between the groups. We may wish to do this to compare 
patients with respiratory disease on different therapies , or to compare sub
jects exposed to different environmental factors, such as air pollution, 
cigarette smoking, etc. 

As with all sample estimates , the regression estimate is subject to sampling 
variation . We estimate its precision by standard error and confidence 
intervals in the usual way. The standard error of the expected Y for an 
observed value x is 
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� 2 [ 1 (x - x)2 J s .e .  = s - + -----
n � (x; - x)2 

We need not go into the algebraic details of this . It is very similar to that in the 
previous Section.  For x = 1 77 we have 

s .e .  = 0.347 1 8  [ ;
0 

+ 
( 1 77 - 1 75 . 38)2 ] 

576 . 352 
= 0. 1 38 

This gives a 95 per cent confidence interval of 3 .98 - (2 . 10 x 0. 1 38)  to 
3 .98 + (2. 1 0  x 0. 1 38) giving 3 .69 litres to 4.27 litres . Here 3 .98 is the estimate 
and 2 . 1 0  is the appropriate point of the t Distribution with (n - 2) = 1 8  
degrees o f  freedom. 

The standard error is a minimum at X = x, and increases as we move away 
from x in either direction . It can be useful to plot the standard error and 95 
per cent confidence interval about the line on the scatter diagram . Figure 1 1 . 8  
shows this for the FEV l  data. Notice that the lines diverge considerably a s  we 
reach the extremes of the data . It is very dangerous to extrapolace beyond the 
data. Not only do the standard errors become very wide, but we often have no 
reason to suppose that the straight-line relationship would persist if we could . 
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Fig. 1 1 .8 Confidence intervals for the regression estimate. 

The intercept a, the predicted value of Y when X = 0, is a special case of 
this . Clearly ,  we cannot actually have a medical student of height zero and 
with FEVl of - 9 . 1 9  litres. Figure 1 1 .9 shows the confidence interval for the 
regression estimate with a much smaller scale, to show the intercept. The 



Using the regression line for prediction 1 99 

10 

Oi 5 95r.  c .  i .  
DJ 
L 0 

..., s .  E! .  
-5 

-i -10 
:::=>-w -15 LL 

-20 

0 50 100 150 200 
He i_gh t  ( c m )  

Fig. 11.9 Confidence intervals for the regression estimate, showing the 
intercept. 

confidence interval is very wide at height = 0, and this does not take account 
of any breakdown in linearity. 

We can also use the regre�sion equation of Y on X to predict X from Y. 
However, this is much less accurate than predicting Y from X. For example, 
if we use the regression of height on FEV 1 (Fig . 1 1 .  7) to predict the FEV 1 of 
subjects with height 1 77 cm, we get a prediction of 4.21 litres, with standard 
error 0.255 .  This is almost twice the standard error obtained from the regres
sion of FEVl on height . Thus we can see that if in doubt about the choice of 
outcome and predictor variables, the outcome variable should be the one we 
wish to predict . Only if there is no possibility of deviations in the X direction 
fulfill ing the assumptions of Normality should we consider predicting X 
from Y. 

Rather than predict the expected Y for a given value of X, we may wish to 
predict the value of Y which we would observe for a given X. In other words, 
we may wish to use the value of Xfor a subject to estimate that subject 's value 
of Y, a calibration problem . The estimate is the same as the regression 
estimate, but the standard error is much greater 

s . e .  = . /s2 [ 1  + � + (x - x)2 ] 'V n l: (x; - x)2 

For a student with a height of 1 77 cm, the predicted FEV 1 is 3 .  98 litres, with 
standard error 0. 605 . Figure 1 1 . 1 0 shows the precision of the prediction of a 
further observation . As we might expect, the 95 per cent confidence intervals 
include all but one of the 20 observations. This is only going to be a useful 
prediction when the residual variance s2 is small .  
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Fig. 1 1 . 10 Confidence interval for a further observation. 

1 1 .  7. Analysis of residuals 

It is often very useful to examine the residuals, the differences between the 
observed and predicted Y. This is best done graphically. We can assess the 
assumption of Normality by looking at the histogram and frequency distribu
tions. Figure 1 1 . 1 1  shows these for the FEVl data. The fit is not bad, though 
there is a suggestion that the distribution is slightly skew to the right. 
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Fig. 11.11 Distribution o f  residuals for the FEVl data. 

Figure 1 1 . 1 2 shows a plot of residuals against the predictor variable. This 
plot enables us to examine deviations from linearity. For example, if the true 
relationship were quadratic, so that Y·increases more and more rapidly as X 
increases , we should see that the residuals are related to X. Large and small X 
would tend to have positive residuals, whereas central values would have 
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Fig. 11 .12  Residuals against height for the FEV1 data. 

negative residuals . Figure 1 1 . 1 2  shows no relationship between the residuals 
and height, and the linear model seems to be an adequate fit to the data. 

Figure 1 1 . 1 2  shows something else, however . One point stands out as 
having a rather larger residual than the others . This may be an outlier, a point 
which may well come from a different population . It is often difficult to 
know what to do with such data . At least we have been warned to double
check this point for transcription errors . It is all too easy to transpose adjoin
ing digits when transferring data from one medium to another. This may 
have been the case here, as an FEVI of 4 .53 ,  rather than the 5 .43 recorded, 
would have been more in l ine with the rest of the data . If  this happened at the 
point of recording, there is not much we can do about it . We could try to mea
sure the subject again ,  or exclude him and see whether this makes any differ
ence. My own feeling is that, on the whole, we must work with all the data 
unless there are very good reasons for not doing so. I have accordingly 
retained this case here. 

1 1 .8.  Deviations from assumptions in regression 

Both the appropriateness of the method of least squares and the use of the t 
Distribution for confidence intervals and tests of significance depend on the 
assumption that the residuals are Normally distributed. This assumption is 
easily met, for the same reasons that it is in the paired t test. The removal of 
the variation due to X tends to remove some of the variation between indi
viduals ,  leaving the measurement error . Problems can arise, however, and it 
is always a good idea to plot the original scatter diagram and the residuals to 
check that there are no gross departures from the assumptions of the method. 
Not only does this help preserve the validity of the statistical method used, 
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Fig. 11 .13 Data which do not meet the conditions of the method of least squares. 

but it may also help us learn more about the structure of the data. 
Figure 1 1 . 1 3  shows the relationship between gestational age and cord 

blood levels of A VP, the antidiuretic hormone, in a sample of male fetuses . 
The variability of the outcome variable A VP depends on the acrual value of 
the variable, being larger for large values of A VP. The assumptions of the 
method of least squares do not apply. However, we can use a transformation 
as we did for the comparison of means in Section 1 0. 5 .  Figure 1 1 . 1 4  shows the 
data after Y has been log transformed, together with the least-squares line. 
The transformed data appear quite suitable for least squares l inear 
regression . 
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Fig. 11.14 Data of Fig. 1 1 . 1 3  after logarithmic transformation. 
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1 1 .9.  Extensions of the regression method 

Often there are several predictor variables related to the outcome and we 
want to study the effects of all of them together .  In a study of factors 
influencing respiratory disease, we might wish to adjust the FEY I  for other 
things besides height : respiratory disease in infancy, say, or cigarette smok
ing. We may wish to see whether differences in FEY 1 between, say, registrars 
and consultants, can be explained by the different age distributions of the 
groups . 

We do this by multiple regression, calculating the coefficients of regression 
equations like 

FEY I = a +  b x  height + c x age 

We can have as many predictors as we like, provided we have enough data 
to calculate the coefficients . The predictors do not have to be continuous. 
They can be discrete or qualitative. The formulae are complicated, but there 
are plenty of computer programs to do the job. We can also fit curves rather 
than straight lines. For example 

FEY I = a + b x height + c x height2 

enables us to fit a quadratic curve to our data . We can then see whether 
this fits better than the straight line. This method is called polynomial 
regression. 

We can fit similar linear expressions to many kinds of non-Normal data, 
too . The overall method is called the general linear model. The details are 
beyond the scope of this book, but the underlying principle is that of regres
sion, whether the outcome variable is a binomial proportion or qualitative 
with several categories . 

1 1 . 10; Correlation 

The regression method tells us something about the nature of the relationship 
between two variables , how one changes with the other, but it does not tell us 
how close that relationship is. To do this we need a different coefficient, the 
correlation coefficient . The correlation coefficient is based on the sum of 
products about the mean of the two variables, so we shall start by considering 
the properties of the sum of products and why it is a good indicator of the 
closeness of the relationship . 

Take the scatter diagram of Fig. 1 1 . 1  and draw two new axes through the 
mean point (Fig. 1 1 . 1 5) .  The distances of the points from these axes repre
sent the deviations from the mean . In the top right section of Fig. 1 1 . 1 5 ,  the 
deviations from the mean of both variables, FEY l  and height , are positive . 
Hence, their products will be positive. In the bottom left section, the 
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Fig. 11 .15 Scatter diagram with axes through the mean point. 

deviations from the mean of the two variables will both be negative. Again ,  
their product will be positive. In the top left section of Fig. 1 1 . 1 5 ,  the  devia
tions of FEY 1 will be positive, and the deviation of height from its mean will 
be negative. The product of these will be negative. In the bottom right sec
tion, the product will again be negative. So in Fig . 1 1 .  I 5 nearly all these pro
ducts will be positive, and their sum will be positive. We say that there is a 
positive correlation between the two variables; as one increases so does the 
other. If one variable decreased as the other increased, we ould have a 
scatter diagram where most of the points lay in the top left and bottom right 
sections . In this case the sum of the products is negative and there is a negative 
correlation between the variables . When the two variables are not related, we 
have a scatter diagram with roughly the same number of points in each of the 
sections . In this case, there are as many positive as negative products , and the 
sum is zero. There is zero correlation or no correlation . The variables are said 
to be uncorrelated. 

The value of the sum of products depends on the units in which the two 
variables are measured. We can find a dimensionless coefficiem if we divide 
the sum of products by the square roots of the sums of squares of X and Y. 
This gives us the product moment correlation coefficient, or the correlation 
coefficient for short, usually denoted by r. 

If the pairs _of observations are denoted by X; and Y; , and there are n pairs, 
then r is given by 

l: (x; - x) (Y; - y) 
r = --:===========-

-J [2: (x; - .X)2] [2: (Y; - y)2] 

which may also be written 



Correlation 

� [ LX/ -
(L:; )2 ] [LY/ -

(L�; )2 ] 
sum of products about the mean of X and Y 

sum of squares about the mean of X times sum of 
squares about the mean of Y 

For the FEY 1 and height we have 

42. 8744 
r = ---;:=======- = 0.58 

-J576 .352 x 9.43868 

205 

The effect of  dividing the sum of products by the root sum of squares of 
deviations of each variable is to make the correlation coefficient lie between 
- 1 .0 and + 1 .0 .  When all the points lie exactly on a straight line such that 
Yincreases as X increases , r = I .  For if Y = a + bX, the sum of products will 
be 

L (x; - x) (Y; - y) = L (x; - x) (a + bx; - a - bx) = L (x; - x) (bx; - bx) 
bL (X; - x)2 

The sum of squares for Y will be 

L (Y; - j1)2 = L (a + bx; - a - bx)2 
= L (bx; - bx)2 
= b2L (X; - x)2 

So for the correlation coefficient we have 

bL (X; - x)2 
r = �-;::====================-

-J [ L ( X; - x)2] [b2L (X; - x)2] 
bL (X; - x)2 
bL (X; - x)2 

1 

When all the points lie exactly on a straight line with negative slope, 
r = - I .  When there is no relationship at all, r = 0, because the sum of 
products is zero . The correlation coefficient describes the closeness of the 
relationship between two variables . It does not matter which variable we take 
to be Y and which to be X. There is no choice of predictor and outcome vari
able, as there is in regression . 

The correlation coefficient measures how close the points are to a straight 
line. Even if there is a perfect mathematical relationship between X and Y, 
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Fig. 11 .16 Variables which are perfectly related but with r <  1 .  

the correlation coefficient will not be exactly I unless this is o f  the form 
Y = a + bX. For example, Fig. 1 1 . 1 6  shows two variables which are per
fectly related but have r = 0.86. Figure 1 1 . 1 7 shows two variables which are 
clearly related but have zero correlation. This shows again the importance of 
plotting the data and not relying on summary statistics such as the correlation 
coefficient only. In practice, relationships like those of Fig. 1 1 . 1 6 and 1 1 . 1 7  
are rare i n  medical statistics, although the possibility is always there. We 
more often have so much random variation that it is not easy to discern any 
relationship at all .  

The correlation coefficient , r ,  i s  related to  the regression coefficient , b, in a 
simple way. I f  Y = a + bX is the regression of Y on X, and X = a' + b '  Y is 
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Fig. 11 .17 Variables which are related but have zero correlation. 
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the regression of X on Y, then r2 = bb ' .  This arises from the formulae 
for r and b. For the FEVl data, b = 0.074 389 and b' = 4.5424, so 
bb' = 0.074 389 x 4 .5424 = 0.33790, the square root of which is 0 .58 1 29, 
the correlation coefficient. We also have 

(sum of products about mean)2 
ri = ����������������� 

sum of  squares of X x sum of squares of Y 

(sum of products about mean)2 sum of squares of X 
(sum of squares of X)2 

b2 x sum of squares of X 
sum of squares of Y 

x 
sum of squares of Y 

This is the proportion of variability explained described in Section 1 1 . 5 .  

1 1 . 1 1 .  Confidence interval and significance test for the 
correlation coefficient 

The correlation coefficient is unusual among sample statistics in having a 
most awkward sampling distribution. Even when X and Y are both Normally 
distributed, r does not itself approach a Normal Distribution until the sample 
size is in the thousands. Furthermore, its distribution is rather sensitive to 
deviations from the Normal in X and Y. However, Fisher discovered a 
remarkable transformation called Fisher's z-transformation, which gives a 
Normally distributed variable whose mean and variance are known in terms 
of the population correlation coefficient which we wish to estimate. From 
this a confidence interval can be found. We will omit the details (see Snedecor 
and Cochran 1 980). For the FEVl data the 95 per cent confidence interval is 
0 . 1 9  to 0 . 8 1 .  This is very wide, reflecting the wide sampling variation which 
the correlation coefficient has for small samples. This means that correlation 
coefficients must be treated with some caution, especially when derived from 
small samples . 

When it comes to testing the null hypothesis that r = 0, or that there is no 
linear relationship, things are much simpler. The test is numerically equi
valent to testing the null hypothesis that b = 0, and the test is valid provided 
at least one of the variables is from a Normal Distribution. This condition is 
the same as that for testing b, where the residuals in the Y direction must be 
Normal. If  b = 0, the residuals in the Y direction are simply the deviations 
from the mean, and these will only be Normally distributed if Yis .  If the con
dition is not met, we can use one of the rank correlation methods described in 
Sections 1 2 .4  and 1 2 . 5 .  

Because the correlation coefficient does not depend on  the means o r  vari
ances of the observations, the distribution of the sample correlation coeffi
cient when the population coefficient is zero is easy to tabulate. Table 1 1 . 2  
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Table 11.2 .  Two-sided 5 per cent and 1 per cent points of the distri-
bution of the correlation coefficient, r, under the null hypothesis 

Degrees of freedom 5 %  1 %  Degrees of freedom 5 %  1 %  

I 1 .00 1 .00 2 1  0 .41  0.53 
2 0 .95 0 .99 22 0.40 0.52 
3 0.88 0 .96 23 0.40 0 .5 1 
4 0 .8 1  0.92 24 0.39 0.50 
5 0 .75 0.87 25 0 .38 0.49 
6 0 .7 1  0 .83 26 0.37 0.48 
7 0.67 0 .80 27 0.37 0.47 
8 0.63 0.77 28 0 .36 0.46 
9 0.60 0.74 29 0.36 0.46 

I O  0.58 0 .7 1  30  0 .35  0.45 
I I  0.55 0.68 40 0.30 0.39 
12 0 .53 0.66 50 0.27 0 .35  
13  0 .5 1 0.64 60 0.25 0 .33 
14  0.50 0.62 70 0.23 0.30 
1 5  0.48 0.61 80 0.22 0.28 
1 6  0.47 0.59 90 0 .21  0.27 
1 7  0.46 0.58 J OO 0.20 0.25 
1 8  0.44 0.56 200 0. 1 4  0. 1 8  
1 9  0.43 0.55 500 0.09 0 . 1 2  
20 0.42 0.54 1 000 0.06 0.08 

shows the correlation coefficient at the 5 per cent and 1 per cent level of 
significance for various degrees of freedom. As in regression, the degrees of 
freedom are (n - 2). For the example we have r = 0. 58 from 20 points, so we 
have 1 8  degrees of freedom. The 1 per cent point for 1 8  degrees of freedom is 
0.56, so we have p < 0.01 , and the correlation is unlikely to have arisen by 
chance. Note that the values of r which can arise by chance with small samples 
are quite high . With 10 points, 8 degrees of freedom,  r would have to be 
greater than 0 .63 to be significant . On the other hand with 1 000 points very 
small values of r, as low as 0 .06, will be significant . 

The ease of the significance test compared to the relative complexity of the 
confidence interval calculation has meant that in the past a significance test 
was usually given for the correlation coefficient. The increasing availability 
of computers with well-written statistical packages should lead to correlation 
coefficients appearing with confidence intervals in the future. 

1 1 . 1 2 .  Uses of the correlation coefficient 

The correlation coefficient has several uses . Using Table 1 1 . 2 ,  it provides a 
simple test of the null hypothesis that the variables are not Ii early related , 
with less calculation than the regression method . It is also useful as a 
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summary statistic for the strength of relationship between two variables. This 
is of great value when we are considering the inter-relationships between a 
large number of variables . We can set up a square array of the correlations of 
each pair of variables . This is called the correlation matrix. Examination of 
the correlation matrix can be very instructive, but we must bear in mind the 
possibility of non linear relationships. There is no substitute for plotting the 
data. The correlation matrix also provides the starting point for a number of 
methods for dealing with a large number of variables simultaneously. We will 
not discuss these further. 

Of course , for the reasons discussed in Chapter 3 ,  the fact that two vari
ables are correlated does not mean that one causes the other. 

1 1A. Appendix 

1 lA. 1 .  Derivation of the least-squares equation 

This section requires knowledge of calculus. We want to find a and b so that 
the sum of squares about the line y = a +  bx is a minimum. We therefore 
want to minimize l: (y; - a - bx;)2 . This will have a minimum when the 
partial differentials with respect to a and b are both zero . 

a 
l: (Y; - a - bx;)2 = l:2(y; - a - bx;) ( - I )  

aa 
- 2l:y; + 2al: I + 2bl:x; 
- 2l:y; + 2an + 2bl:x; 

This must equal 0 so LY; = na + bl:x; 

a 
ab 

l: (y; - a - bx;)2 = l:2(y; - a - bx;) ( -x;) = - 2l:X;Y; + 2al:x; + 2bl:x? 

This must equal 0 so l:x;Y; = al:x; + bl:x? 
1 

We multiply the first equation by l:x; 
n 

1 b 
- l:x;LY; = al:x; + - (l:x;)2 n n 

Subtracting this from the second equation we get 

1 b 
l:X;Y; - - LX;l:Y; = bl:x? - - (l:x;)2 n n 
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This gives us  

Regression and correlation 

b = 
LX2 - (LX;)2 

I n 

If we divide the first equation by n we get the formula for a 

LY; = na + bLX; 
1 b 

- LY = a + - Lx. 
n ' n ' 

a = .Y - bx 

Hence the l ine passes through the mean point . 

1 1A. 2 .  The standard error of b and the variance about the 

line 

To find the standard error of b, we must bear in mind that in our regression 
model all the random variation is in Y. We first rewrite the sum of products :  

L (X; - x) (Y; - y) = L { (x; - x)y; - (X; - x)y} 
= L (X; - X)Y; - L (X; - x)y 
= L (x; - x)y; - fL (x; - x) 
= L (X; - x)y; 

This is because y is the same for all i and so comes out of the summation, and 
L (X; - x) = 0. We now find the variance of the sampling distribution of b by [ L (X; - x) (Y; - y) ] 

Var (b) = Var 
L (X; - x)2 [ L (X; - x)y; ] 

= Var L (X; ·- x)2 

The variance of a constant times a random variable is the square of the con
.stant times the variance of the random variable (Section 6.6) .  The X; are 
constants , not random variables. So 

1 
Var (b) = 

[L (X; _ x)2] 2 
L (X; - x)2Var (y;) 

Var (Y;) is the same for all Y;, say Var (y;) = s2 • Hence 



Exercise 1 1M 

s2 
Var (b) = 

2 L (X; - x) 

2 1 1  

The standard error o f  b is the square root o f  this. Next we find s2• The regres
sion model is Y = a + bX + E, and a and b are constants. We are predicting 
Y for given X, so there is no random variation in X; all the random variation 
is in E. Hence s2 = Var ( Y) = Var (E) .  We have seen in Section 1 1 . 3 that the 
error E is the random variable which stands for the deviations from the line in 
the Y direction . These deviations are Y; - (a + bx;) ,  since a + bx; is the y 
value for the line at x = X;. The sum of squares of these deviations is found by 
a mathematical tr ick, replacing a by j - bx. 

L [Y; - (a + bx;)]2 = L [Y; - (j - bx + bx;)] 2 
= L [Y; - J - (bx; - bx)J2 
= L [Y; - j - b (x; - x)]2 
= L [(Y; - j)2 - 2b (y; - j) (X; - x) + b2 (X; - x)2] 
= L (Y; - j)2 - 2b L (Y; - j) (x; - x) + b2L (X; - x)2 
= L (Y; - J)2 - 2b x b L (X; - x)2 + b2L (X; - .X)2 
= L (Y; - j)2 - b2L (X; - x)2 

This is because 

So 

Exercise 1 1M 

b = 
L (Y; - j) (x; - x) 

L (X; - x)2 

(Each branch is either true or false.) 

1. The product moment correlation coefficient, r: 

(a) must lie between - 1 and + 1 ;  

(b) can only have a valid significance test carried out when at least one of the 
variables is from a Normal Distribution; 

(c) is half when there is no relationship ;  

(d) depends on the choice of dependent variables; 
(e) measures the magnitude of the change in one variable associated with a 

change in the other. 
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2. A simple linear regression equation: 

(a) describes a line which goes through the origin; 

(b) describes a line with zero slope; 

(c) is not affected by changes of scale; 

(d) describes a line which goes through the mean point; 

(e) is affected by the choice of dependent variable. 

3.  If a t  test is used to test the significance of the slope of a regression line: 

(a) deviations from the line in the independent variable must follow a 
Normal Distribution; 

(b) deviations from the line in the dependent variable must follow a Normal 
Distribution; 

(c) the variance about the line is assumed to be the same throughout the 
range of the predictor variable; 

(d) the y variable must be log transformed; 

(e) all the points must lie on the line. 

4. In Fig. l lM. 1 :  
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Fig. 11M.1 A scatter diagram. 

(a) x and y are independent ; 

(b) x and y are uncorrelated ; 

C" 
·-' 10 15 20 

(c) the correlation between x and y is less than 1 ;  

(d) x and y are perfectly related; 

(e) the relationship is best estimated by simple linear regression . 
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5.  In Fig. l lM.2: 

(a) x and y are independent random variables ; 

(b) x and y are uncorrelated; 

(c) y increases as x increases; 

(d) x and y are linearly related; 

2 1 3  

(e) the relationship between x and y could be  studied by  polynomial 
regression . 
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Fig. 11M.2 A scatter diagram. 
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Figure I IE .  I shows scatter diagrams and summary statistics for PEFR and 
height measured in a group of medical students. There appears to be a rela
tionship between height and PEFR and a difference in both height and PEFR 
between the sexes .  We shall use regression to examine whether the greater 
PEFR of males is explained by their greater height or whether there is a differ
ence in PEFR quite apart from that produced by height . 

We shall fit the regression line of PEFR on height for females , for males 
and for both together. If there is no difference in PEFR apart from that due 
to height then the three lines will be the same, except for random variation 
(Fig . I IE . 2(a)) .  If males have a higher PEFR than females of the same height 
then the slope for the combined gi;oup will be greater than those for the two 
sexes separately (Fig . I I E .2(b)) . If males have a lower PEFR than females of 
the same height then the slope for the combined group will be less than those 
for the sexes separately. 
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SUMMARY STAT I ST I C S  

He i gh t  PEFR 

NUMBER 43 43 
MEAN 1 65 .  93720 9 474 . 0 69768 
MEDI AN 1 66 475 
M I N I MUM 1 55 360 
MAX I MUM 1 80 . 6 595 

VARI ANCE 34 . 3952492 2 40 7 . 32502 

ST . DEV . 5 . 8647463 4 9 . 0 64 4 986 

S .  E. MEAN . 894365427 7 .  4822658.8 

SUM OF SQS 1 44 4 . 60 047 1 0 1 1 0 7 . 65 1  

SUM OF PRODUCTS 420 6 . 94837 

SUMMARY STAT J ST J CS 

He i gh t  PEFR 

NUMBER 58 

MEAN 1 77 .  303448 

M E D J A N  1 77 . 2  

M I N I MUM 1 6 4  

MAX I MUM 1 90 

VAR I ANCE 39 . 7806897 
ST . DEV . 6 . 30 7 1 9349 

S . E .  MEAN . 82 8 1 75079 

SUM OF SOS 2267 . 4993 1 

SUM OF PRODUCTS 8993 

SUMMARY STAT J ST J CS 

36 

58 

568 . 2  

5 5 1  . 5  
430 
792 

3980 . 24 3 1 5  

63 . 089 1 683 
8 . 2840 1 36 4  

226873 . 86 

He i gh t  PEFR 

NUMBER 1 0 1  1 0 1  

MEAN 1 7 2 . 464356 528 . 1 2 4753 

MED I AN 1 72 530 

M J N  ! MUM 1 5 5  360 

MAX J MUM 1 90 792 

VAR I ANCE 69 . 0223 1 72 5467 . 74469 
ST . DEV . 8 . 30796709 73 . 944 1 999 
S . E .  MEAN . 826673623 7 . 35772289 

SUM OF SOS 690 2 . 23 1 72 54677 4 . 469 
SUM OF PRODUCTS 3 96 1 9 . 58 9 1  

Fig. 1 1E.1 PEFR (litre/min) and height (cm) for a group of medical .students. 
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Fig. 1 1E.2 Hypothetical regressions of PEF on height for three possible sex 
effects. 

I .  From the means and sums of squares and products about the mean 
given, calculate the slope and intercept for each set of data. 

2 .  Does the difference in PEFR between males and females appear to be 
explained by the difference in height? 

3 .  For males and for females , calculate the correlation coefficient between 
PEFR and height . 

4. I f  the relationship between PEFR and height is the same for males and 
females, why should the correlation coefficients be different? 



1 2 .  Methods based on rank 
order 

1 2 . 1 .  Non-parametric methods 

In  Chapters 1 0  and 1 1  we described a number of methods of analysis which 
relied on the assumption that the data came from a Normal Di tribution. To 
be more precise, we could say the data come from one of the Normal family 
of distributions , the particular Normal Distribution involved being defined 
by its mean and standard deviation, the parameters of the distribution.  In  
these methods we estimate the parameters of the underlying Normal 
Distribution. 

Methods which do not assume a particular family of distributions for the 
data are said to be non-parametric. The t Distribution methods in Chapter I O  
and regression and correlation i n  Chapter 1 1  are parametric methods, 
because the data are assumed to come from the family of Normal Distribu
tions . The parameters are the mean and standard deviation of the particular 
Normal Distribution which the data follow. In this and the next chapter we 
shall consider some non-parametric tests of significance. There are many 
others , but these will il lustrate the general principle. 

We have already met one non-parametric test, the sign test (Section 9.2) .  
The large-sample Normal test could also be regarded as non-parametric .  

It is useful to distinguish between three types of measurement scales : 
(a) Interval scale This means that the size of the difference between two 

values on the scale has a meaning. For example, the difference in temperature 
between 1 °C and 2 °C is the same as the difference between 3 1  °C and 
32 °C.  

(b) Ordinal scale Observations are ordered, but  differences may not 
have a meaning. For example, anxiety and neuroticism are often measured 
using sets of questions, the number of positive answers giving the anxiety 
scale. A set of 36 questions would give a scale from 0 to 36. The difference in 
anxiety between scores of 1 and 2 i s  not necessarily the same a the difference 
between scores 3 1  and 32 .  

(c) Nominal scale We have a qualitative or categorical variable, where 
individuals are grouped but not necessarily ordered. Eye colour is a good 
example. 
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There are intermediate cases, such as nominal scales with ordered cate
gories , but these will suffice for our purposes. All the methods of Chapters 1 O 

and 1 1  apply to interval data , being based on differences of observations 
from the mean. The methods in this chapter apply to ordinal data. Any 
interval scale which does not meet the requirements of Chapters I O  and 1 1  
may be treated as ordinal , since it is, of course, ordered. This is the more com
mon application in medical work . 

General texts such as Armitage ( 1973), Snedecor and Cochran ( 1 980) and 
Colton ( 1 974) tend not to go into a lot of detail about rank and related 
methods. A handbook unsurpassed for clarity and ease of use is Seigel ( 1 956), 
which is highly recommended. For a more up-to-date account ,  try Conover 
( 1 980) . 

1 2 . 2 .  The Mann-Whitney U test 

This is the non-parametric equivalent of the two sample t test (Section 1 0.3 ) .  
It works like this . Suppose we have anxiety scores on a 37-point scale, 0 to 36 ,  
obtained from two groups of individuals (hypothetical data) : 

A 
B 

7 
1 1  

4 
6 

9 
2 1  

1 7  
1 4  

We want to  know whether there i s  any evidence that A and B are 
drawn from populations with different levels of anxiety. The null hypothesis 
is that there is no tendency for members of one population to exceed members 
of the other. The alternative is that there is such a tendency, in either 
direction. 

First we arrange the observations in ascending order, i . e .  we rank 
them: 

4 
A 

6 
B 

7 
A 

9 
A 

1 1  
B 

14  
B 

1 7  
A 

2 1  
B 

We now choose one group, say A. For each A, we count how many Bs pre
cede i t .  For the first A, 4, no Bs precede. For the second ,  7, one B precedes, 
for the third A, 9, one B, for the fourth, 1 7 , three Bs. We add these numbers 
of preceding Bs together: 

U = 0 + 1 + 1 + 3 = 5  

Now, if  U is very small, nearly all the As are less than nearly all the Bs. I f  U 
is large, nearly all As are greater than nearly all Bs . Moderate values of U 
mean that As and Bs are closely mixed. Consider two further samples : 

c 
D 

2 
26 

3 
30 

3 
1 9  

5 
25 
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For A and C we have: 

2 
c 

3 
c 

3 
c 

4 
A 

5 
c 

7 
A 

Counting Cs for each A, we have: 

u = 3 + 4 + 4 + 4 = 1 5  

9 
A 

1 7  
A 

The value of U is large; A and C appear different . For A and D we have : 

4 
A 

Here we have: 

7 
A 

9 
A 

1 7  
A 

1 9  
D 

25 
D 

U = 0 + 0 + 0 + 0 = 0  

26 
D 

The value of U is very small; A and D appear different . 

30 
D 

Now, i f  we know the distribution of U under the null h pothesis that 
the samples come from the same population, we can say with what prob
ability these data could have arisen if there were no difference. We can 
carry out the test of significance. The distribution of U under the null 
hypothesis can be found easily. The two sets of four observations can 
be arranged in 70 different ways , from AAAABBBB to BBBBAAAA. 
Under the null hypothesis these arrangements are all equa y likely and, 
hence, have probability 1 /70. Each has its value of U, from 0 to 1 6 , and by 
counting the number of arrangements which give each value of U, we can 
find the probability of U. For example, U = 0 only arises from the order 
AAAABBBB and so has probability 1 170 = 0 .014 .  The result U = 1 
only arises from AAABABBB and so has probability 1 /70 = 0 .0 14 also . 
The result U = 2 can arise in two ways : AAABBABB and AABAABBB. 
I t  has probability 2/70 = 0.029. The full set of probabilities is shown in  
Table 12 . 1 .  

Table 12.1. Distribution of the Mann-Whitney U statistic, for two samples 
of size 4 

u probability u probability 

0 0 .014 9 0 . 1 00 
1 0 .0 14  10  0 . 1 00 
2 0.029 I I  0.071 
3 0.043 1 2  0.07 1 
4 0.07 1 1 3  0.043 
5 0.07 1 1 4  0.029 
6 0 . 1 00 1 5  0.014 
7 0. 1 00 1 6  0.0 1 4  
8 0. 1 1 4 
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We apply this to our three examples . For A and B, U = 5 and the prob
ability of this is 0 .07 1 . As we did for the sign test (Section 8 .2) we consider the 
probability of more extreme values of U, U = 5 or less, which is 0.07 I + 
0.07 1  + 0.043 + 0.029 + 0.0 14  + 0 .014 = 0.242. This gives a one-sided 
test. For a two-sided test, we must consider the probabilities of a difference as 
extreme in the opposite direction . We can see from Table 1 2 . 1 that the distri
bution of U is symmetrical , so the probability of an equally extreme value in 
the opposite direction is also 0.242, hence the two sided probability is 0.242 
+ 0.242 = 0.484. This is clearly likely to have happened by chance and so the 
two samples could have come from the same population . 

For A and C,  U = 1 5 ,  probability U ;::::: 1 5  is 0 .0 14  + 0 .0 14  = 0 .028, and 
for a two-sided test 0.028 + 0 .028 = 0 .056 .  By the usual criterion, we would 
just accept the null hypothesis . For A and D, U = 0, probability U � 0 is 
0.014 ,  for a two-sided test we have 0 .014 + 0 .0 14  = 0.028 which is signifi
cant at the 0 .05 level . With such small samples, of course, only the most 
extreme outcomes are unlikely to happen by chance. 

We shall now consider the Mann-Whitney U �est in practice. There is no 
need to carry out the summation of probabilities described above, as these are 
already tabulated . Table 1 2 .2  shows the 5 per cent points of U for each com
bination of sample sizes n1 and n2 up to 20. 

For our groups A and B, U = 5, we turn to the n2 = 4 section, and find the 
n 1  = 4 column. From this we see that the 5 per cent point for U is 0, and so 
U = 5 is not significant. 

For groups A and C we have a problem. U = 1 5  is an extreme value, but 
only low values of U are tabulated. Note that the maximum size of U is 1 6 :  

C C C C A A A A  
u = 4 + 4 + 4 + 4 = 1 6  

o r ,  i n  general, n 1  x n2• We can see this i f  we consider the extreme arrange
ment where all n1 Cs are less than all n2 As: 

Each A has n 1  Cs before it so U is given by: 

As the distribution is symmetrical , the probability that U ;::::: r = prob
ability that (n 1  n2 - U) � n 1  n2 - r, which is tabulated. The two possible 
values of U are related by U + U' = n 1  n2 • So we subtract U from n 1 n2 to give 
16 - 1 5 = 1 .  We see that the probability is just over 5 per cent. For A and D,  
U = 0, and this i s  significant a t  the 5 per cent level .  



N 
N 
0 

Table 12.2. Two-sided 5 per cent points for the distribution of U, lower value, in the Mann-Whitney U 
test 
-

ni 
n ,  2 3 4 5 6 7 8 9 J O  I I  1 2  I 3  1 4  I 5  1 6  I 7  I 8  1 9  20 

2 - - - - - 0 0 0 0 I I I I I 2 2 2 2 
3 - - 0 I I 2 2 3 3 4 4 5 5 6 6 7 7 8 $; 
4 0 I 2 3 4 4 5 6 7 8 9 1 0  1 1  I I  1 2  1 3  1 3  

co - :;. 
5 0 I 2 3 5 6 7 8 9 I I  1 2  1 3  I 4  1 5  I 7  I 8  I 9  20 0 
6 I 2 3 5 6 8 J O  I I  1 3  1 4  I 6  I 7  1 9  2 I  22 24 25 27 

0.. - C/) 
7 I 3 5 6 8 J O  1 2  I 4  1 6  1 8  20 22 24 26 28 30 32 34 O" 0 
8 0 2 4 6 8 I O  I 3  I 5  1 7  1 9  22 24 26 29 3 I  34 36 3 8  4 1  C/) 
9 0 2 4 7 I O  I 2  I 5  1 7  20 23 26 34 39 42 45 48 

co 
28 3 1  37  0.. 

IO  0 3 5 8 I I  14  17  20 23 26 29 33 36 39 42 45 48 52 55 0 
::i 

I I  0 3 6 9 1 3  1 6  1 9  23 26 30 33 37 40 44 47 5 1  55 58 62 ..., 
1 2  I 4 7 I I  I 4  1 8  22 26 29 33 37 4 1  45  49 53  57  6 1  65 69 0 ::i 
1 3  I 4 8 1 2  1 6  20 24 28 3 3  3 7  4 1  45 50 54 59 63 67 72 76 :>;-
I4  I 5 9 1 3  1 7  22 26 3 1  3 6  40 45 50 55 59 64 67 74 78 83 0 ..., 
I 5  I 5 1 0  1 4  1 9  24 29 34 39 44 49 54 59 64 70 75 80 85 90 0.. co 
I6 I 6 I I  1 5  2 1  26 3 I  37 42 47 53 59 64 70 75 8 1  86 92 98 ..., 
1 7  2 6 1 1  1 7  22 28 34 39 45 5 I  57 63 67 75 8 1  87 93 99 1 05 
1 8  2 7 1 2  1 8  24 30 36 42 48 55 61 67 74 80 86 93 99 1 06 I 1 2  
1 9  2 7 1 3  1 9  25 32 38 45 52 58 65 72 78 85 92 99 1 06 I 1 3  1 1 9 
20 2 8 1 3  20 27 34 4 1  48 55 62 69 76 83 90 98 1 05 1 1 2 1 1 9 1 27 

If U is less than or equal to the 1abu l<1ted value the di fference is significant. 
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Table 12.3. Biceps skinfold thickness (mm] in two groups of patients 

Crohn's disease Coeliac disease 

1 .8 4.2 1 . 8 
2 .2 4.4 2.0 
2.4 4 .8  2.0 
2.5 5 .6 2 .0 
2 .8  6 .0 3 .0 
2 .8  6 .2  3 .8  
3 .2 6.6 4.2 
3 .6 7 .0 5 .4 
3 . 8  1 0.0 7 .6  
4.0 1 0.4 

2 2 1  

We can now turn to  the practical analysis of  some real data. Consider the 
biceps skinfold thickness data of Table 1 0.4, reproduced as Table 1 2 . 3 .  We 
will analyse this using the Mann-Whitney U test. Denote the Crohn 's disease 
group by A and the coeliac group by B. The joint order is as follows : 

1 . 8 1 .8 2 . 0  2.0 2.0 2 .2 2 .4 2 . 5  2 . 8  2 . 8  
A B B B B A A A A A 
� � � 

3 . 0  3 . 2  3 . 6  3 . 8  3 . 8  4.0 4.2 4 .2 4 .4 4 .8  
B A A A B A A B A A 

'-v-' � 
5 . 4  5 . 6  6.0 6 .2  6 .6 7.0 7 .6 1 0.0  10 .4  
B A A A A A B A A 

Let us count the As before each B .  Immediately we have a problem. The 
;_;rst A and the first B have the same value. Does the first A come before the 
first B or after it? We resolve this dilemma by counting f for the tied A .  
The ties between the second , third and fourth Bs  do  not matter, a s  we  can 
count the number of As before each without difficulty. We have for the U 
statistic :  

U = f + I + I + I + 6 + 8f + ! Of + 1 3  + 18 = 59f 

This is the lower value, since n1 n2 = 9 x 20 = 1 80 and so the middle value is 
90. We can therefore refer it to Table 12 .2 . The critical value at the 5 per cent 
level is for groups size 9 and 20 is 48, which our value exceeds . Hence the dif
ference is not significant at the 5 per cent level and the data are consistent with 
the null hypothesis that there is no tendency for members of one population 
to exceed members of the other. This is the same as the result of the t test of 
Section 1 0 .4. 

For larger values of n 1  and n 2 ,  calculation of U can be rather tedious. A 
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simple formula for U can be found using the ranks. The rank of the lowest 
observation is 1 ,  of the next is 2, and so on. If a number of observations are 
tied, each having the same value and hence the same rank, we give each the 
average of the ranks they would have were they ordered . For example, in the 
skinfold data the first two observations are each 1 . 8 .  They each receive rank 
(1 + 2)/2 = 1 f. The third, fourth and fifth are tied at 2 .0 ,  giving each of them 
rank (3 + 4 + 5)/3 = 4 .  The sixth, 2 .2 ,  is not tied and so has rank 6.  

The ranks for the skinfold data are as follows: 

skin fold 1 . 8 1 .8 2 .0 2.0 2 .0 2 .2 2 .4 2 . 5  2 . 8  2 . 8  
group A B B B B A A A A A 
rank I f 1 1-2 4 4 4 6 7 8 9f 9f 

r1 ,. 2 ,. 3 ,. 4 

skinfold 3 . 0  3 . 2  3 . 6  3 . 8  3 . 8  4 .0 4 .2  4 .2 4 .4 4 .8 
group B A A A B A A B A A 
rank 1 1  1 2  1 3  1 4f 1 4f 1 6  1 7f 1 7f 1 9  20 

,. 5 r 6 1"7 

skin fold 5 . 4  5 . 6  6 .0  6 . 2  6.6 7 .0 7 . 6  1 0. 0  1 0 .4  
group B A A A A A B A A 
rank 2 1  22 23 24 2 2 27 28 29 

,. 8 ,. 9 

We denote the ranks of one group by r1 , r2, • . •  , r,, , . The number of As pre-
ceding the first B must be (r1 - 1 ) ,  since there are no Bs before it and it is the 
r1 th observation. The number of As preceding the second B is (r� - 2), since it 
is the r2 th observation, and one preceding observation is a B. Similarly, the 
number preceding the third B is (r3 - 3), and the number preceding the ith B is 
(r; - i ) .  Hence we have : 

"• 

U =  2: (r; - i) 
i = I  

"• " •  

2: ,.. -I 2: 
i :: l i= I 

"• 
n 1  (n 1  + 1 )  2: ,.. -I 2 i= I 

That is , we add together the ranks of all the n 1  observarions , subtract 
n1 (n 1  + 1 )/2 and we have U. For the example, we have 

I I I 9 (9 + 1 )  
U =  1 2 + 4 + 4 + 4 +  1 1 + 1 42 + 1 72 + 2 1 + 27 -

2 
1 04f - 45 = 59f 

as before. 
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This formula is sometimes written 

But this is simply based on the other group, since U + U' = n, n2 • For testing 
we use the smaller value, as before. 

As n, and n2 i ncrease, the calculation of the exact probability distribution 
becomes more difficult . When we cannot use Table 1 2 .2 ,  we use a large
sample approximation instead . Because U is found by adding together a 
number of independent, identically distributed random variables , the central 
limit theorem (Section 7 .2) applies . The distribution of U approximates to a 
Normal Distribution .  The mean is ±n ,  n2 and the standard deviation is 

Hence 

is an observation from a Standard Normal Distribution. For the example, 
n, = 9 and n2 = 20, we have 

and 

n 1 n2 9 x 20 -- = = 90 
2 2 

= . f 9 x 20 x 30 
'V 1 2  = .J450 = 2 1 .2 1  

59.5 - 90 
2 1 . 2 1  

- 1 .44 

This gives a two-sided probability from Table 7 . 1  of 0 . 1 5 ,  which we can com
pare with 0 .2 1  for the two sample t test on the untransformed data and 0 . 1 5  
for the log-transformed data. 

Neither Table 1 2 .2  nor the above formula for standard deviation take ties 
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into account; both assume the data can be fully ranked. Their use for data 
with ties is an approximation . For small samples we must accept this. For the 
Normal approximation there is a truly daunting formula which takes this into 
account (see Seigel 1 956). Thus the Mann-Whitney U test is not free of 
assumptions which may be violated. We assume that the data can be fully 
ordered, which in the case of ties is not so. 

The Mann-Whitney U test is a non-parametric equivalent of the two
sample t test. The advantage over the t test is that the only assumption about 
the distribution of the data is that the observations can be ranked, whereas 
for the t test we must assume the data are from Normal Distributions with 
uniform variance. There are three disadvantages. For data which are 
Normally distributed, the U test is less powerful than the t test, i.e. the t test, 
when valid, can detect smaller differences for given sample size. However, 
the U test is almost as powerful for moderate and large sample sizes, and 
usually this difference is not important . The U test gives no idea of the size of 
the difference. I t  is purely a test of significance. The t test also enables us to 
estimate the size of the difference and give confidence intervals .  

There are other non-parametric tests which test the same or  similar null 
hypotheses . Two of these, the Wilcoxon two-sample test and the Kendall tau 
test, are different versions of the Mann-Whitney U test which were 
developed around the same time and later shown to be identical. 

1 2 . 3 .  The Wilcoxon matched-pairs test 

This test is an equivalent of the paired t test. We have a sample measured 
under two conditions and the null hypothesis is that there is no tendency for 

Table 12.4. Results of a trial of pronethalol for 
the prevention of angina pectoris, (Pritchard et 
al. 1963} 

Number of attacks while on 
Difference 

Placebo Pronethalol Placebo - Pronethalol 

7 1  29 42 
323 348 - 25 

8 1 7 
1 4  7 7 
23 16 7 
34 25 9 
79 65 14  
60 4 1  1 9  

2 0 2 
3 0 3 

1 7  1 5  2 
7 2 5 
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the outcome on one condition to be higher or lower than the other. The 
alternative hypothesis is that the outcome on one condition tends to be higher 
or lower than the other. 

Consider the data of Table 1 2 .4, previously discussed in Sections 2 .4  and 
8 .2 ,  where we used the sign test for the analysis .  In the sign test, we have 
ignored the magnitude of differences, and only considered their signs . If we 
can use information about the magnitude, we would hope to have a more 
powerful test . To avoid making assumptions about the distribution of 
the differences, we use their rank order in a similar manner to the 
Mann-Whitney U test . 

First , we rank the differences by their absolute values, i . e .  ignoring the 
sign . From the data of Table 1 2 .4 we have: 

difference 2 2 3 5 7 7 7 9 1 4  1 9  - 25 42 
rank i .!. 2 1 .!. 2 3 4 6 6 6 8 9 1 0  1 1  1 2  

ranks of + ve 
differences 1 .!. 2 i .!. 2 3 4 6 6 6 8 9 1 0  1 2  

ranks o f  - ve 
differences 1 1  

We now sum the ranks of the positive differences, 1 i + 1 i + 3 + 4 + 6 + 6 
+ 6 + 8 + 9 + 1 0  + 1 2  = 67,  and the ranks of the negative differences , 1 1 .  
If  the null hypothesis were true and there was no difference, we would expect 
the rank sums for positive and negative differences to be about the same, 
equal to 39 (their average) . The test statistiC is the lesser of these sums, T. The 
smaller T is ,  the lower the probability of the data arising by chance . 

The distribution of T when the null hypothesis is true can be found by 
enumerating all the possibilities , as described for the Mann-Whitney U 
statistic. Table 1 2 . 5  gives the 5 per cent and 1 per cent points for this distribu
tion, for sample size N up to 25 . For the example, N = 12 and so the differ
ence would be significant at the 5 per cent level if Twere less than or equal to 
1 4 .  We have T = 1 1 ,  so the data are not consistent with the null hypothesis .  
The data support the view that there is a real tendency for patients to have 
fewer attacks while on the active treatment. 

From Table 1 2 . 5 ,  we can see that the probability (T < 1 1 ) lies between 0.05 
and 0 .0 1 . This is greater than the probability given by the sign test , which was 
0.006 (Section 9.2) .  This is surprising, as we would expect greater power, and 
hence lower probabilities when the null hypothesis is false, when we use more 
of the information.  This greater probability reflects the fact that the one 
negative difference, - 25 , is large. Examination of the original data shows 
that this individual had very large numbers of attacks on both treatments, 
and it seems at least possible he may belong to a different population from the 
other eleven . 
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Table 12.5.  Two-sided 5 per cent and 1 
per cent points of the distribution of T 
(lower value) in the Wilcoxon one
sample test 

Probability that T is as far or 
further from the expected than 

Sample size the tabulated value 
n 5 %  1 %  

6 none 
7 
8 
9 

1 0  

1 1  
1 2  
1 3  
1 4  
1 5  

1 6  
1 7  
1 8  
1 9  
20 

2 1  
22 
23 
24 
25 

2 
4 
6 
8 

1 1  
14  
1 7  
2 1  
25 

30 
35 
40 
46 
52 

59 
66 
73 
8 1  
90 

none 
0 
2 
3 

5 
7 

10  
1 3  
1 6  

1 9  
23 
28 
32 
37 

43 
49 
55 
6 1  
68 

Like Table 1 2 .2 ,  Table 1 2. 5  is based on the assumption that the differences 
can be fully ranked and there are no ties . Ties may occur in two ways in this 
test . First, ties may occur in the ranking sense. In the example we had two dif
ferences of + 2 and three of + 7 .  These were ranked equally :  l t and 1 t , and 6,  
6 and 6 .  When ties are present between negative and positive differences, 
Table 1 2 . 5  only approximates to the distribution of T. 

Ties may also occur between the observations under the two conditions, 
where the observed difference is zero . In the same way as for the sign test , we 
omit zero differences (Section 8 .2). The test is done using the number of non
zero differences only to enter Table 12 . 5 .  This seems odd, in that a lot of zero 
differences would appear to support the null hypothesis. For example, if in 
Table 1 2 .4 we had another dozen patients with zero differences, the calcula
tion and conclusion would be the same. However, the obser ·ed difference 
would be smaller and the Wilcoxon test tells us nothing about the size of the 
difference, only about its existence. This illustrates the danger of allowing 
significance tests to outweigh all other ways of looking at the data . 

As N increases, the distribution of T under the null hypothesis tends 
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towards a Normal Distribution, as does that of  Mann-Whitney U statistic . 
The sum of all the ranks , irrespective of sign is fN(N + I ) , so the expected 
value of T under the null hypothesis is ±NCN + I ) , since the two sums should 
be equal . The standard deviation of T is 

Hence 

� N(N + I )  (2N + I )  

24 

T - ±N(N + I )  � N(N + I )  (2N + I )  
24 

is from a Standard Normal Distribution if the null hypothesis is true. For the 
example of Table 1 2 .4, we have: 

T - ±N(N + I ) � N (N + I )  (2N + I )  

24 

1 1  - ± x 1 2  x 1 3  � 1 2 x 1 3  x 25 
24 

- 2 . 1 97 

From Table 7 .  I this gives a two-tailed probability of 0.028, similar to that 
obtained from Table 1 2 . 5 .  

I f  the differences are Normally distributed, the t test i s  the most powerful 
test . The Wilcoxon test is almost as powerful, however, and in practice the 
difference is not great . The sign test is similar in power to the Wilcoxon for 
very small samples , but as the sample size increases, the Wilcoxon test 
becomes much more powerful .  This might be expected since the Wilcoxon 
test uses more of the information. 

1 2.4. Spearman's rank correlation coefficient, p 

We noted in Chapter 1 1  the sensitivity to assumptions of Normality of the 
product moment correlation coefficient , r. This led to the development of a 
non-parametric alternative based on ranks. Spearman 's approach was direct . 
First we rank the observations, then we calculate the product moment cor
relation of the ranks, rather than the observations themselves. The resulting 
statistic has a distribution which does not depend on the distribution of the 
original variables . It is usually denote by the Greek letter p ,  pronounced 
'rho ' .  

Table 1 2 .6 shows data from a study of the geographical distribution of a 
tumour, Kaposi 's sarcoma, in mainland Tanzania . The incidence rates were 
calculated from cancer registry data and there was considerable doubt that all 
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Table 12.6. Incidence of Kaposi's sarcoma and access of population 
to health centres for each region of mainland Tanzania [Bland et al. 
1 977) 

Percent population Rank order 
Incidence with JO km of 

Region cases/mill ion/year health centre Incidence Pop OJo 

Coast 1 .28 4.0 I 3 
Shinyanga 1 .66 9 .0 2 7 
Mbeya 2 .06 6 .7  3 6 
Tabora 2.37 1 .8 4 I 
Arusha 2.46 1 3 . 7  5 1 3  
Dodoma 2.60 1 1 .  I 6 I O  
Kigoma 4.22 9 .2 7 8 
Mara 4.29 4.4 8 4 
Tanga 4.54 23 .0 9 1 6  
Singida 6. 1 7  10 .8  10  9 
Morogoro 6 .33  1 1 . 7 I I  I I  
Mtwara 6.40 14 .8  1 2  14  
Westlake 6.60 1 2 .5  1 3  1 2  
Kilimanjaro 6.65 57.3 14 17 
Ru vu ma 7 .2 1  6 .6  15  5 
Iringa 8 .46 2.6 16 2 
Mwanza 8 .54 20.7 1 7  1 5  

cases had been not ified . The degree of reporting of cases may have been 
related to population density or availability of health services. In addit ion, 
incidence was closely related to age and sex (where recorded) and so could be 
related to the age and sex distribution in the region . To check chat none of 
these were producing artefacts in the geographical distribution , I calculated 
the rank correlation of disease incidence with each of the possible explana
tory variables . Table 12 . 6  shows the relationship of incidence to the per
centage of the population living within I 0 km of a health centre. Figure 1 2 . l 
shows the scatter diagram of  these data, suggesting that there may be a slight 
relationship. The percentage within JO km of a health centre is very highly 
skewed , whereas the disease incidence appears somewhat bimodal 
(Fig . 7 .20) . The assumptions of the product moment correlation do not 
appear to be met , so rank correlation was preferred. 

The calculation of Spearman' s  p proceeds as follows . The ranks for the two 
variables are found (Table 1 2 .6) . Now, we can easily apply the formula for 
the product moment correlation to these ranks . We define: 

sum of  products about mean of ranks 
p = 

sum of  squares of ranks for first variable 
x sum of squares of ranks for second variable 

The calculation proceeds as follows (denoting ranks in one variable by x and 
the other by y ) 
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Fig. 12.1  Incidence of Kaposi ' s  sarcoma per million per year and percentage of 
population within 1 0  km of a health centre, for 1 7  regions of mainland Tanzania. 

2:X;Y; = 1 x 3 + 2 x 7 + 3 x 6 + 4 x 1 + 5 x 13 + 6 x 1 0  + 7 x 8 + 8 x 4 
+ 9 x 1 6  + 1 0  x 9 + 1 1 x 1 1 + 1 2 x 1 4  + 1 3  x 1 2  + 1 4  x 1 7  
+ 1 5 x 5 + 1 6 x 2 + 1 7 x 1 5 
1 53 1  

I:x; = 1 + 2 + 3 + . . .  + 1 5  + 1 6  + 1 7  = 1 53 
I:y; = 1 53 ,  similarly 

I:x? = l2 + 22 + 32 + . . .  + 1 52 + 1 62 + 1 72 = 1 785 
I:y/ = 1 785 ,  similarly 

Sum of products about mean 

I:x;Y; 
(I:x;) (2: Y;) 

n 

1 54 

Sum of squares for x 

= I:x? 
(I:x;)2 

n 

= 408 

Sum of squares y = 408 , similarly 
Hence 

1 54 

1 5 3 1  -

1785 -

p = = 0.38 
.J408 x 408 

1 53 x 1 53 
1 7  

1 532 
--

1 7  

We can now use p to test the null hypothesis that the variables are indepen
dent , the alternative being that either one variable increases as the other 
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Table 12.7. Two-sided 5 per cent and 1 
per cent points of the distribution of 
Spearman's p 

Probability that p is as far or 
further from the expected than 

Sample size the tabulated value 
n 50Jo I OJo  

4 none none 
5 1 .00 none 
6 0.89 1 .00 
7 0.82 0.96 
8 0.79 0.93 
9 0.70 0.83 

I O  0.68 0.81  

increases, or that one decreases as the other increases. As usual with ranking 
statistics, the distribution of p for small samples can be found by listing all the 
possible permutations and their values of p. For a sample size of n there are, 
of course , n! possibilities. Table 1 2 .  7 shows the critical value of p for sample 
sizes up to 10. As n increases, so p tends to a Normal Distribution when the 
null hypothesis is true, with expected value 0 and variance l l(n - 1 ) .  Thus 
p/.J[ l l(n - 1 )] = p.J(n - 1) is from a Standard Normal Distribution. 

For our data we have 0 . 38 .J( l  7 - I) = 1 .52, which from Table 7 . 1  has two
sided probability of 0 . 1 3. Hence we have not found any evidence of a rela
tionship between the observed incidence of Kaposi ' s  sarcoma and access to 
health centres . In this study there was no significant relationship with any of 
the possible explanatory variables and we concluded that the observed geo
graphical distribution did not appear to be an artefact of population distribu
tion or diagnostic provision. 

We have ignored the problem of ties in the above. We treat observations 
with the same value as described in Section 1 2 .2 .  We give them the average of  
the ranks they would have if they were separable and apply the rank correla
tion formula as described above. In this case the distribution of Table 1 2 .  7 is 
only approximate. 

There are several ways of calculating this coefficient , resulting in formulae 
which appear quite different, though they give the same result (see Siegel 
1 956) . 

12.5 .  Kendall's rank correlation coefficient, 7 

Spearman's  rank correlation is quite satisfactory for testing the null 
hypothesis of no relationship, but is difficult to interpret when the null 
hypothesis is not true. Kendall developed a different rank correlation coeffi
cient, Kendall ' s  T, which has some advantages over Spearman's .  (The Greek 
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letter T is pronounced 'tau' . )  It is rather more tedious to  calculate than 
Spearman's ,  but in the computer age this hardly matters. To see how it works 
we shall consider some artificial data for two variables, X and Y, measured 
on five subjects, A to E :  

Subject x y rank X rank Y 
A 3 1 2  2 3 
B 7 1 7  4 5 
c 6 9 3 2 
D 2 7 I 
E 9 1 6  5 4 

We find the rank order of the subjects on the two scales . We wish to examine 
the strength of the relationship between X and Y. Consider any pair of indi
viduals ,  say A and B. We ask :  are they in the same order in the two rankings? 
For X, A has rank 2 and B rank 4, so A precedes B. For Y, A has rank 3 and B 
rank 5 ,  so A precedes B .  Hence, A and B are in the same order. Now consider 
A and C. For X, A has rank 2 and C has rank 3, so A precedes C. For Y, A has 
rank 3 and C has rank 2,  so C precedes A. Thus, A and C are in a different 
order . We can do this for every possible pair of subjects :  

AB, same AC, diff. 
BD, same BE, diff. 

AD, same AE, same BC, same 
CD, same CE, same DE, same 

Now, if the ranks are identical, each pair of individuals will be in the same 
order on both rankings. If the ranks are exactly opposite, each pair will be in a 
different order on the two rankings. I f  there is no relationship at all between 
the rankings , half the pairs will be in the same order and half will be different . 
We count the number of pairs in the same order, which we shall call P, and 
the number in different order , which we shall call Q. The total number of 
pairs is (P + Q) .  For the example, P = 8 and Q = 2, there are 10 pairs . Now 
define S, the difference between the number of pairs in the same and the 
number of pairs in different order, S = P - Q. For the example, 
S = 8 - 2 = 6. Clearly the maximum possible value of S is (P + Q), and this 
occurs when the two rankings are the same. The minimum possible value is 
- (P + Q), when the rankings are exactly opposite, and S is zero when there 
is no relationship at all. Now define 

s 7 = ---
P + Q 

This is Kendal l ' s  rank correlation coefficient. For the example 

6 6 7 = -- = - = 0.6 
8 + 2 10 

As the number of  subjects increases , the number of pairs increases rapidly 
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and this method of calculation becomes unwieldy. First we note that the total 
number of pairs , P + Q, is the number of ways of choosing 2 things from n 
things, i . e .  

n ! n x (n - 1 ) x (n - 2) x . . .  x 3 x 2 x I 
±n (n - 1 ) 

2 !  (n - 2)! 2 x I x (n - 2) x 1(n - 3)  x . . .  x 3 x 2 x I 

Hence 

s 7 = 
±n (n - ! )  

Also, Q = ±n (n - ! )  - P and so S = 2P - ±n (n - I ) .  
The simplest way to calculate P is t o  write down the ranks with one ranking 

in order: 

D A C B E 
x 2 3 4 5 
y 3 2 5 4 

Now consider the second ranking. The first item, D, has rank 1 .  All the 4 indi
viduals to the right of this have greater rank, so they will all be in the correct 
order. Hence 4 pairs containing D are in the same order on both rankings. 
The second item, A, has 2 individuals to the right of it with greater rank (all 
but C) but so contributes 2 further pairs in the correct order. Note that the 
pair AD has already been counted. The third item has 2 ranks greater than it 
on the right, the fourth has no ranks greater than it, nor of course, has the 
fifth and last .  Hence P = 4 + 2 + 2 + 0 + 0 = 8 as before. Since n = 5 ,  
P + Q = ±n (n - I )  = ± x 5 x 4 = 1 0, Q = 1 0  - 8 = 2 and S = P - Q = 
8 - 2 = 6. Hence T = 6/ 10  = 0.6 as before. 

Kendall 's T is intuitively very simple when there are no ties. When there are 
tied ranks things become more complicated . First we shall calculate the 
numerator. 

Consider the following artificial data: 

Subject x y X rank Y rank 
A 0 0 1.!.  2 2 

B 5 4 5.!. 2 4.!. 2 

c 5 6 st 6 
D 2 4 3 4.!. 2 

E 0 0 1 .!. 2 2 

F 4 0 4 2 

Before discussing the practical calculation of T, we shall look at all the pos
sible pairs: 
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AD, same AC, same AD, same AE, none AF, none 
BC, same BD, none BE, same BF, same CD, same 
CE, same CF, same DE, same DF, diff. EF, none 

There are I S  pairs . A and B have ranks 1 and S on the first ranking and 2 and 4 
on the second ranking, and so are in the same order . So are pairs AC and AD. 
Consider A and E .  A and E have ranks 1 and 1 on the first ranking, and ranks 
2 and 2 on the second. They are not in any order . We do not know whether A 
or E really ranks higher. Hence there is no known order and we cannot say 
whether they are ordered in the same way or differently. We record 'none ' .  
Pair A and F have ranks 1 and 4 on  the first ranking and 2 and 2 on  the 
second. We cannot distinguish between them on the second ranking, so we 
cannot say whether the two orders are the same or different , despite the fact 
that they are ordered on the first ranking. Hence we now have three kinds of 
pairs: those where the orders are the same, those where the orders are dif
ferent, and those where the order is undetermined . For the example, the 
number the same is P = 10, the number different is Q = 1 and the number 
with no order is N = 4. Here P + Q does not add up to tn (n - 1 ) .  We have 
P + Q + N = tn (n - 1 ) .  We define S = P - Q as before, in this case 
s = 10 - 1 = 9 .  

For practical calculation of S ,  we first order the individuals by  one of the 
rankings, say the X rank :  

x 

y 

A i t 
2 

E 
1 t 
2 

F 
4 

2 

c 
st 
6 

It is no longer sufficient to find P, as we cannot calculate S from it . We must 
calculate Q as wel l .  The first case, A, has the same rank as the second , E, on 
the first rank ,  so we do not count the pair AE . We have 3 greater ranks to the 
right (D, B ,  C), and 0 smaller. For E, we also have 3 greater and 0 smaller. For 
D, we have 2 greater, 1 smaller, and I ,  B, with no order. For F we have 2 
greater and 0 smaller. The final two, B and C have the same rank and so con
tribute nothing to P or Q. We now have 

P = 3 + 3 + 2 + 2 + 0 + 0 = 10 
Q = O + O + I + O + O + O = l 
Hence S = P - Q = I O  - 1 = 9, as before. 

Now consider the denominator. There are tn (n - 1 )  possible pairs . I f  there 
are t individuals tied at a particular tank for variable X, no pairs from these t 
individuals contribute to S. There are tt(t - I )  such pairs . If we consider all 
the groups of tied individuals we have Ltt(t - I) pairs which do not contri
bute to S, summing over all groups of tied ranks. In the example we have two 
tied at I I, and two tied at st ,  so 



234 Methods based on rank order 

2:±ru - 1 )  = ± x 2 x 1 + ± x 2 x 1 = 2 

Hence the total number of pairs which can contribute to S is ±n (n - I )  -
2:±t(t - 1 ) .  For the example this is ( 1 5 - 2) = 1 3 .  Hence S cannot be greater 
than ±n (n - I )  - 2:±t(t - 1 ) .  The size of S is also limited by ties in the second 
ranking . I f  we denote the number of tied individuals in a group by u, then the 
number of pairs which can contribute to S is ±n (n - 1 )  - 2:±u (u - 1 ) .  For 
the example, there are three at 2 and two at 4± . Hence 

±n (n - 1 )  - 2:±u (u - 1 )  = (I x 9 x 8 - I x  3 x 2 - I x  2 x 1 )  
1 5 - 4 

= 1 1  

So S must be less than 1 1 .  
There are three different ways of handling ties when using T, denoted by Ta, 

Tb, and Tc- By far the most useful formula is that for Tb, which is the propor
tion of untied pairs having the same ordering. We define Tb by 

s 
-.f[±n (n - 1 )  - 2:±t(t - l )] [In (n - 1 )  - 2:±u (u - l )] 

We note that if there are no ties, 2:±t(t - 1 )  = 0 and 2:tu (u - 1 ) = 0, so 

s 
Tb = = T 

-.f[±n (n - I ) x ±n (n - 1 )] 

We can also see that if the numbers of ties are the same, it is possible for Tb to 
equal I or - 1 ,  since the two limits on the size of S are the same. I f  the 
numbers of ties are not the same, Tb must be less than 1 .  In our example S must 
be less than or equal to 1 1 ,  but the denominator is -.I ( 1 3  x 1 1 ) greater than 
1 1 . This is reasonable, since if the numbers of ties are different , the rankings 
cannot be identical .  When the rankings are identical Tb = 1 ,  no matter how 
many ties there are. For the example: 

9 
Tb = 

)( l 3  X ! l ) 
= 0.75 

There are good reasons for this choice of denominator, based on the general 
theory of correlations (Kendall 1 970) . Kendall also discusses two other ways 
of dealing with ties, obtaining coefficients Ta and Tc , but their use is restricted . 

The value of Tb for the Kaposi 's sarcoma data can be calculated directly 
from Table 1 2 .6 ,  since the incidence is presented in rank order. There are no 
ties , so we can use the simple method : 

P = 1 4 + 1 0 + 1 0 + 1 3  + 4 + 6 + 7 + 8 + 1 + 5 + 4 + 2 + 2 + 0 + 1 + 1 + 0 
= 88 
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The number of pairs i s  tn (n - 1 ) = I x 1 7 x 1 6 = 1 36, so Q 1 36 -
88 = 48 and S = P - Q = 88 - 48 = 40. Hence T = Sltn (n - 1 ) = 

40/ 1 36 = 0 .29. 
We often want to test the null hypothesis that there is no relationship 

between the two variables in the population from which our sample was 
drawn . As usual , we are concerned with the probabi lity of S being the same as 
or more extreme (i .e .  far from zero) than the observed value. Table 1 2 . 8 was 
calculated in the same way as Table 12 . 1 .  It shows the probability of being as 
extreme as the observed value of S for n up to 10 . For convenience, S is 
tabulated rather than r. When ties are present this is only an approximation. 

Table 12.8. Two-sided 5 per cent and 1 
per cent points of the distribution of S 
for Kendall 's  T 

Probability that S is as far or 
further from the expected than 

Sample size the tabulated value 
n 5% 1 %  

4 none none 
5 IO none 
6 I 3  I 5  
7 I S  I 9  
8 I 8  22 
9 20 26 

I O  23 29 

When the sample size is greater than 10 , S is approximately Normally dis
tributed. The mean of the distribution is zero . If there are no ties, the variance 
is 

1 
Yar(S) = - n (n - 1 ) (2n + 5) 1 8 

When there are ties, the variance formula i s  horri fically complicated , 
though if there are not many ties it will not make much difference if the 
simple form above is used . Seigel ( 1 956) gives it. See Kendall ( 1 970) for a full 
discussion. 

For the example, S = 40, n = 1 7 and so the Standard Normal variate is 

s s 

�-&;n(n - 1 ) (2n + 5) 

40 

. I 1 x 1 7 x 1 6 x 39 'V IS  
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40 
.J589.33 

40 
24.276 
1 .65 

From Table 7 . 1  of the Normal Distribution we find that the two-sided prob
ability of a value as extreme as this is 0.05 x 2 = 0. 1 ,  which is very similar to 
that found using Spearman's  p. The product moment correlation, r,  gives 
r = 0 .30, p = 0 .24. This illustrates the considerable reduction in power for r 

when its assumptions are not met. 
Why have two di fferent rank correlation coefficients? Spearman's  p is 

older than Kendall 's T, and can be thought of as a simple analogue of the pro
duct moment correlation coefficient , Pearson's r. The coefficient , r is a part 
of a more general and consistent system of ranking methods. 

In general, the numerical value of p is greater than that of r. I t  is not pos
sible to calculate p from r or r from p, they measure different sorts of correla
tion. The coefficient p gives more weight to reversals of order hen data are 
far apart in rank than when there is a reversal close together in rank, r does 
not . However, in terms of tests of significance both have the same power to 
reject a false null hypothesis, so for this purpose it does not matter which is 
used . 

12 .6. Continuity corrections 

In most of the methods in this chapter we have used a continuous distribu
tion, the Normal , to approximate to a discrete distribution, U, T, or S. For 
example, Fig. 1 2 .2  shows the distribution of the Mann-Whitney U statistic 
for n ,  = 4, n2 = 4 (Table 1 2 . 1 )  with the corresponding Normal curve . 
From the exact distribution, the probability that U < 2 is 0 .0 14  + 0 .0 14  + 

0 .029 = 0 .057 .  The corresponding Standard Normal deviate i 

2 -
4 x 4 

2 

. /4 x 4 x 9 
'V 12  
- I .  732 

This has a probability of 0.048 , interpolating in Table 7 .  I .  This is smaller 
than the exact probabi lity. This disparity arises because the continuous distri
bution gives probability to values other than the integers 0, I ,  2, etc . The 
estimated probability for U = 2 can be found by the area under the curve 
between U = 1 . 5 and U = 2 . 5 .  The corresponding Normal deviates are 
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Fig. 1 2 . 2  Dist ribution o f  t h e  Mann-Wi t ney U s t a t i s t i c .  n 1  = 4 .  n2 = 4 .  w h en t h e  
n u l l  hypothesis  i s  t rue,  w i t h  the corresponding Normal curve, a n d  area 
estima ting Prob(U = 2 ) .  

- 1 . 876 and - 1 . 588 ,  wh ich have probabi l i t ies from Table 7 . 1  o f  0 .030 and 
0 .056.  This  g ives an est imated probabi l i ty  for U = 2 of  0 .056 - 0 .030 = 

0.026 , wh ich compares qui te  well wit h t he exact figure o f  0 .029. Thus ,  to  
est imate t he probabi l i ty  t hat U < 2,  we estimate the area below U = 1 . 5 ,  not 
below U = 2. This gives us a Standard Normal deviate of  - 1 . 588 ,  as a lready 
noted, and hence a probabi l i ty  of 0.056 .  This corresponds remarkably well  
with the exact probabi l i ty  of  0.057 ,  especial ly when we consider how smal l  n 1  
and n 2  are . 

We shal l  get a better approximat ion from our Standard Normal deviate i f  
w e  make U c loser to  i t s  expected value by ± . I n  genera l ,  w e  get a bet ter fit i f  we 
make the  observed value of t he stat ist ic closer to  its expected value by hal f of  
t he in terval between adj acent discrete values.  Th i s  is  a continuity correction . 

For S, t h is  in terval is 2 ,  not I ,  For S = 2P - ±n (n + l ) , and P is an in teger .  
A change of  o n e  u n i t  i n  P prod uces a change of  two un i t s  in  S. T h e  cont inu i ty  
correct ion is  t herefore ha l f  of  2 ,  wh ich  is  l .  We make S closer to  the expected 
value of 0 by I before applying the Normal approximat ion .  For the  Kapos i ' s  
sarcoma data ,  we had S = 40,  wit h n = 17 .  Us ing the cont i nui ty correct ion 
gives 

I S i - I 
..Jvar(S) 

40 - I 

. /_
I
_ x 1 7  x 1 6  x 39 'Y 1 8  

39 
24. 276 
1 .607 
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where I S I means the absolute value or modulus, without sign. This gives a 
two-sided probability of 0.054 x 2 = 0. 1 1 ,  slightly greater than the uncor
rected value of 0 . 1 0 . 

Continuity corrections are important for small samples ; for large they are 
negligible. We shall meet another in Chapter 1 3 .  

12.7 .  Parametric or non-parametric methods? 

For many statistical problems there are several possible solutions, just as for 
many diseases there are several treatments ,  similar perhaps in their overall 
efficacy but displaying variation in their side-effects, in their interactions 
with other diseases or treatments, and in their suitability for di fferent types of 
patients .  There is often no one right treatment, but rather treatment is 
decided by the prescriber's judgement of these effects, past experience, and 
plain prejudice . Many problems in statistical analysis are like this . In com
paring the means of two small groups, for instance, we could use a t test, a t 
test with a transformation, a Mann-Whitney U test , or one of several others . 
Our choice of method depends on the plausibility of Normal assumptions, 
the importance of obtaining a confidence interval, the ease of calculation, 
and so on . It depends on plain prejudice , too . some users of statistical 
methods are very concerned about the implications of Normal assumptions 
and will advocate non-parametric methods wherever possible; others are too 
careless of the errors that may be introduced when assumptions are not met . 

I sometimes meet people who tell me that they have used non-parametric 
methods throughout their analysis as if this is some kind of badge of statis
tical purity. It is nothing of the kind . It may mean both that their significance 
tests have less power than they might have, and that results are left as ' not 
significant' when, for example, a confidence interval for a difference might 
be more informative . 

On the other hand , such methods are very useful when the necessary 
assumptions of the t Distribution method cannot be made, and it would be 
equally wrong to eschew their use. Rather, we should choose the method 
most suited to the problem, bearing in mind both the assumptions we are 
making and what we really want to know. We shall say more about what 
method to use when, in Chapter 14 .  
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Exercise 1 2M 

(Each branch is either true or false . )  

1 .  For comparing the responses t o  a new treatment o f  a group o f  patients 

with the responses of a control group to a standard treatment, possible 

approaches include: 

(a) the two-sample t method ; 

(b) the sign test; 

(c) the Mann-Whitney U test; 

(d) the Wilcoxon matched-pairs test; 

(e) rank correlation between responses to the treatments . 

2. Kendall's rank correlation coefficient: 

(a) depends on the choice of dependent variable; 

(b) is zero when there is no relationship; 

(c) cannot have a valid significance test when there are tied observations; 

(d) must lie between - 1 and + 1 ;  
(e) is not affected by a log transformation of the variables . 

3.  Tests of significance based on ranks: 

(a) are always to be preferred to methods which assume the data to be 
Normally distributed; 

(b) are less powerful than methods based on the Normal Distribution when 
data are Normally distributed; 

(c) enable confidence intervals to be estimated easily; 

(d) require no assumptions about the data; 

(e) are often to be preferred when data cannot be assumed to follow any 
particular distribution. 

4. Ten men with angina were given an active drug and a placebo on alter

nate days in random order. Patients were tested using the time in minutes 

for which they could exercise until angina or fatigue stopped them. The 

existence of an active drug effect could be examined by: 

(a) paired t test; 



240 Methods based on rank order 

(b) Mann-Whitney U test ; 

(c) sign test; 

(d) Wilcoxon matched-pairs test; 

(e) Spearman' s  p 

S. An observed value of zero for the following test statistics would lead to a 

conclusion of ' not significant' :  

(a) S for Kendall 's T; 
(b) Mann-Whitney U; 

(c) T in the Wilcoxon matched-pairs test ; 

(d) Spearman's  p ;  
(e) the  number of negatives in the sign test . 

Exercise 1 2E 

In this exercise we shall analyse the respiratory compliance and arterial 
oxygen pressure data of Table I OE .  I using non-parametric methods . 

1 .  For the data of Table I OE . I ,  use the sign test to test the null hypothesis 
that changing the waveform has no effect on p0(02 ) .  

2 .  Test the same null hypothesis using a test based on  ranks . 

3 .  How do these compare with one another and with the results of I OE part 
3?  

4.  Use the sign test to  test the null hypothesis that changing the  waveform 
has no effect on compliance . 

5 .  Test the same null hypothesis using a test based on ranks. 

6 .  Repeat step 4 using log-transformed compliance. Does the transforma
tion make any difference? 

7. Repeat step 5 using log compliance. Why do you get a different answer? 
8. What do you conclude about the effect of waveform from the non

_parametric tests? 

9.  How do the conclusions of the parametric and non-parametric 
approaches differ? 



1 3 . The analysis of cross-
ta bula tions using the 
Chi-squared Distribution 

13.1 .  The chi-squared test for association 

Table 1 3  . 1  shows the results of the clinical trial of streptomycin for treatment 
of pulmonary tuberculosis (MRC 1 948), described in Chapter 2. We have the 
assessment of the patients' condition tabulated by the treatment. This kind of 
cross-tabulation of frequencies is also called a contingency table or cross

c/assification. This chapter concerns the analysis of such tables, principally 
using the Chi-squared Distribution . 

This is an area where non-parametric methods are mainly used . It can be 
quite difficult to measure the strength of the association between two qualita
tive variables , but it is easy to test the null hypothesis that there is no relation
ship or association between the two variables . If the sample is large, we do 
this by a chi-squared test. 

The chi-squared test for association in a contingency table works like this. 
The null hypothesis is that there is no association between the two variables, 
the alternative being that there is an association of some type. We find for 
each cell of the table the frequency which we would expect if the null 
hypothesis were true. To do this we use the row and column totals, so we are 

Table 13 .1 .  Contingency table showing radiological appear
ance at six months as compared with appearance on admis
sion in the MRC streptomycin trial 

Radiological assessment Streptomycin Control Total 

Considerable improvement 28 4 32 
Moderate or slight improvement 1 0  1 3  23 
No material change 2 3 5 
Moderate or slight deterioration 5 1 2  1 7  
Considerable deterioration 6 6 1 2  
Deaths 4 1 4  1 8  

Total 55 52 1 07 
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finding the expected frequencies for tables with these totals, called the 
marginal totals .  

There are 107 patients, of whom 32 showed considerable improvement , a 
proportion 32/ 1 07 .  If there were no relationship between the variables treat
ment and outcome, we would expect each column of the table to have the 
same proportion, 32/ 1 07 ,  of its members in the first row. Thus the 55 patients 
in the first column would be expected to have 55 x 32/ 1 07 = 1 6 .4 in the first 
row . (By expected we mean the average frequency we would get in the long 
run. We could not actually observe 16 .4 subjects . )  The 52 patients in the 
second column would be expected to have 52 x 32/ 107 = 1 5 .6 in the first 
row. The sum of these two expected frequencies is, of course, 32, the row 
total . Similarly, there are 23 patients in the second row and so we would 
expect 55 x 23/ 1 07 = 1 1 . 8  in the second row, first column and 
52 x 23/ 1 07 = 1 1 .2  in the second row, second column. We calculate the 
expected frequency for each row and column combination, or cell. The 1 2  
cells of Table 1 3  . 1  give us the expected frequencies shown i n  Table 1 3  . 2 .  
Notice that the row and column totals are the same a s  in Table 1 3 . 1 .  

Table 13.2 .  Expected frequencies under the null hypothesis 
for Table 1 3 . 1  

Radiological assessment Streptomycin Control Total 

Considerable improvement 16 .4 1 5 .6 32 
Moderate or slight improvement 1 1 .8 1 1 .2 23 
No material change 2.6 2 .4 5 
Moderate or slight deterioration 8 .7  8 .3  1 7  
Considerable deterioration 6.2 5.8 12 
Deaths 9 .3  8 .7  18  

Total 55.0 52.0 1 07 

I n  general, the expected frequency for a cell of the contingency table is 
found by 

row total x column total 
grand total 

It does not matter which variable is the row and which the column . 
We now compare the observed and expected frequencies . If the two vari

ables are not associated, the observed and expected frequencies should be 
close together, any discrepancy being due to random variation. We need a 
test statistic which measures this. The differences between observed and 
expected frequencies are a good place to start. We cannot simply sum them as 
the sum would be zero, both observed and expected frequencies having the 
same grand total , 1 07 .  We can resolve this as we resolved a similar problem 



The chi-squared test for association 243 

with differences from the mean (Section 4. 7), by squaring them. The size of 
the difference will also depend in some way on the number of patients. When 
the row and column totals are small, the difference between observed and 
expected is forced to be smal l .  I t  turns out, for reasons discussed in Appendix 
1 3A. l ,  that the best statistic is 

(observed frequency - expected frequency)2 

all cells 

This is often written as 

For Table 1 3  . 1  this is 

� (0 - £)2 

E 

expected frequency 

+ 

+ 

+ 

+ 

+ 

� (0 - £)2 

E 

(28 - 1 6 .4)2 

1 6.4 

( 1 0  - 1 1 . 8)2 

1 1 . 8  

(2 - 2 .6)2 

2 .6 

(5 - 8 .7)2 

8 .7  

(6  - 6 .2)2 

6 .2  

(4 - 9 .3)2 

9 .3  

= 27 .2 

(4 - 1 5 .6)2 
+ 

1 5 . 6 

( 1 3  - 1 1 .2)2 
+ 

1 1 .2 

(3 - 2 .4)2 
+ 

2.4 

(12 - 8 . 3)2 
+ 

8 . 3  

( 6  - 5 . 8)2 
+ 

5 . 8  

( 14  - 8 .7)2 
+ 

8 .7  

As is explained in 1 3A. 1 ,  the  distribution of this test statistic when the  null 
hypothesis is true and the sample is large enough is the Chi-squared Distribu
tion, with degrees of freedom given by 

(number of rows - 1) x (number of columns - 1 )  

We shall discuss what i s  meant by ' large enough' i n  Section 1 3 .2 .  
For Table 1 3 . 1  we have (6 - l ) x (2 - 1 ) = 5  degrees of freedom. Table 

1 3 . 3  shows some percentage points of the Chi-squared Distribution for 
selected degrees of freedom . We see that for 5 degrees of freedom the 1 per 
cent point is 1 5  . 1 ,  which our observed value of 27 .2 exceeds . The data are not 
consistent with the null hypothesis and we can conclude that there is good 
evidence of a relationship between treatment and condition. 

It is worth pointing out that the chi-squared statistic is not an index of the 
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Table 13.3. Percentage points of the Chi-
squared Distribution 

Probability that the tabulated 
value is exceeded (Fig. 1 3 .  I )  

Degrees o f  freedom I O"lo 5"7o ! "lo O. l "lo  

I 2 . 7 1  3 .84 6.63 1 0.83 
2 4 .61  5 .99 9 .21  1 3 .82 
3 6.25 7 . 8 1  1 1 . 34 1 6 .27 
4 7 .78 9.49 1 3 .28 1 8 .47 
5 9.24 1 1 .07 1 5 .09 20.52 
6 1 0 .64 1 2 .59 1 6. 8 1  22.46 
7 12 .02 14.07 1 8 .48 24.32 
8 1 3 .36 1 5 . 5 1  20.09 26. 1 3  
9 14 .68 16 .92 2 1 .67 27 .88 

J O  1 5 .99 1 8 . 3 1  23 .2 1  29.59 
I I  1 7 .28 19 .68 24.73 3 1 .26 
1 2  1 8 .55 2 1 .03 26.22 3 2 . 9 1  
1 3  1 9 . 8 1  22.36 27.69 34.53 
1 4  2 1 .06 23 .68 29. 1 4  36. 1 2  
1 5  22. 3 1  25 .00 30.58 37 .70 
16 23.54 26.30 32.00 39.25 
1 7  24.77 27.59 33 .4 1  40.79 
1 8  25.99 28.87 34.8 1 42. 3 1  
1 9  27.20 30. 1 4  36. 1 9  43 .82 
20 28.41 3 1 .4 1  37 .57 45 .32 

0. � 
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Fig. 13.1 Percentage point of Chi-squared Distribution. 
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strength of the association. If  we double the frequencies in Table 1 3  . 1 ,  this 
will double the chi-squared statistic but the strength of the association is 
unchanged . 

13.2.  Validity of the chi-squared test for small samples 

We have seen that the test statistic l: (O - E)2/ E, which we can call the chi
squared statistic, follows the Chi-squared Distribution provided the expected 
values are large enough. This is a large sample test, l ike those of Sections 9. 7 
and 9 .8 .  The smaller the expected values become, the more dubious will be 
the test. 

The conventional criterion for the test to be valid is usually attributed to 
the statistician W. G. Cochran . The rule is this : the chi-squared test is valid if 
at least 80 per cent of  the expected frequencies exceed 5 and all the expected 
frequencies exceed 1 .  We can see that Table 1 3 .2 satisfies this requirement, 
since only 2 out of 1 2  expected frequencies, 1 7  per cent , are less than 5 and 
none are less than 1 .  Note that this condition applies to the expected fre
quencies, not the observed frequencies . It is quite acceptable for an observed 
frequency to be 0, provided the expected frequencies meet the criterion. 

This criterion is open to question. Simulation studies appear to suggest that 
the condition may be too conservative and that the chi-squared approxima
tion works for smaller expected values, especially for larger numbers of rows 
and columns. At the time of writing the analysis of tables based on small 
sample sizes, particularly 2 by 2 tables , is the subject of hot dispute among 
statisticians. As yet, no-one has succeeded in devising a better rule than 
Cochran's ,  so I would recommend keeping to it until the theoretical ques
tions are resolved. Any chi-squared test which does not satisfy the criterion is 
always open to the charge that its validity is in doubt . 

I f  the criterion is not satisfied we can usually combine or delete rows and 
columns to give bigger expected values. Of course, this cannot be done for 2 
by 2 tables , which we consider in more detail below. This editing must be 
done with regard to the meaning of the various categories. In Table 1 3  . 1 ,  
there would be no point in combining rows 1 and 6 to give a new category of 
'considerable improvement or death' to be compared to the remainder, as the 
comparison would be absurd . 

For an example, consider Table 1 3 .4 .  These data, from the MRC strepto
mycin trial ,  show the results of radiological assessment for a subgroup of 
patients, defined by a prognostic variable. We want to know whether there is 
evidence of a streptomycin effect within this subgroup, so we want to test the 
null hypothesis of no effect using a chi-squared test . There are 6 out of 8 
expected values less than 5 ,  so the test on this table would not be valid. We 
must combine the rows so as to raise the expected values . Since there are no 
observations in the ' no change' row, it does not matter what we do with it ,  so 
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Table 1 3.4. Observed and expected frequencies of categories of radio
logical appearance at six months as compared with appearance on admis
sion in the MRC streptomycin trial, patients with an initial temperature of 
100-100.9 Of 

Streptomycin Control 

Radiological assessment Observed Expected Observed Expected Total 

Improvement 1 3  8.4 5 9 .6 18  
No change 0 0.0 0 0 .0 0 
Deterioration 2 4.2 7 4 .8 9 
Death 0 2.3 5 2 .7  5 

Total 1 5  1 5  1 7  1 7  32 

we could combine it with the ' improvement' row to give 'no change or 
improvement' . We can also combine the 'deterioration' and 'death' rows to 
give a 'deterioration or death' row. The expected values are then all greater 
than 5 and we can do the chi-squared test with I degree of freedom. The new 
table is shown in Table 1 3 . 5 .  We have 

Table 13.5 .  Reduction of Table 13 .4 to a 2 by 2 table 

Streptomycin Control 

Radiological assessment Observed Expected Observed Expected Total 

Improvement or no change 1 3  8.4 5 9 .6  1 8  
Deterioration o r  death 2 6.6 12 7.4 1 4  

Total 1 5  1 5  1 7  1 7  32 

� (0 - £)2 ( 1 3  - 8 .4)2 (5 - 9 .6)2 

E 8 .4 
+ 

9 .6  

(2 - 6 .6)2 ( 1 2  - 7 .4)2 + + 
6 .6 7 .4 

10 .8  

Under the null hypothesis this i s  from a Chi-squared Distribution with one 
degree of freedom, and from Table 1 3 . 3  we can see that the probability of 
getting a value as extreme as 1 0. 8  is less than I per cent. We have data incon
sistent with the null hypothesis and we can conclude that the evidence 
suggests a treatment effect in this subgroup .  

I f  the table does not meet the criterion even after reduction to  a 2 by 2 table, 
we can apply either a continuity correction to improve the approximation to 
the Chi-squared Distribution, or an exact test based on a discrete distribution 
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l ike those of Sections 1 2 .2 to 1 2 . 5 .  These methods are described in  Sections 
1 3 . 5  and 1 3 . 6 .  

1 3 . 3 .  Tests for 2 b y  2 tables 

Consider the data on cough symptom and history of bronchitis discussed in 
Section 9 .8 .  We had 273 children with a history of bronchitis of whom 26 
were reported to have day or night cough, and 1 046 children without history 

Table 13.6. Cough during the day or at night 
at age 14 for children with and without a his
tory of bronchitis before age 5 (Holland et al. 
1 9 78) 

Bronchitis No bronchitis Total 

Cough 26 
No cough 247 

Total 273 

44 
1 002 

1 046 

70 
1 249 

1 3 1 9 

of bronchitis , of  whom 44 were reported to have day or night cough. We can 
set these data out as a cross-classification table, as in Table 1 3 .6 .  

Table 13.7. Expected frequencies for Table 
1 3 .6 

Bronchitis No bronchitis Total 

Cough 1 4 .49 55.5 1 70 
No cough 258 . 5 1  990.49 1 249 

Total 273 1 046 1 3 1 9 

Let us use the chi-squared test to test the null hypothesis of no association 
between cough and history . The expected values are shown in Table 1 3 .  7. The 
test statistic is 

� (0 - £)2 
E 

(26 - 14 .49)2 
1 4.49 

(247 - 258 .5 1 )2 + �------
258 . 5 1  

1 2 .2 

(44 - 55 . 5 1 )2 + -'----�-
55 .  5 l 

( 1002 - 990.49)2 + -------
990.49 

We have r = 2 rows and c = 2 columns, so there are (r - l )(c - 1 )  = 
(2 - 1 )  x (2 - 1 )  = 1 degree of freedom. We see from Table 1 3 . 3  that the 
5 per cent point is 3 . 84, and the 1 per cent point is 6 .63 ,  so we have observed 
something very unlikely if the null hypothesis were true. Hence we reject the 
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null hypothesis of no association and conclude that there is evidence for a 
relationship between present cough and history of bronchitis. 

Now the null hypothesis ' no association between cough and bronchitis' is 
the same as the null hypothesis 'no difference between the proportions with 
cough in the bronchitis and no-bronchitis groups' . If  there were a difference, 
the variables would be associated . Thus we have tested the same null 
hypothesis in two different ways. In  fact these tests are exactly equivalent. I f  
we take the Normal deviate from Section 9 . 8 ,  which was 3 .49, and square it ,  
we get 1 2 .2, the chi-squared value. The method of Sections 9 .8  and 8.6 has the 
advantage that it can also give us a confidence interval for the size of the dif
ference, which the chi-squared method does not . 

1 3.4. The chi-squared test for trend 

Consider the data of Table 1 3 . 8 .  Using the chi-squared test described in Sec
tion 1 3  . 1 ,  we can test the null hypothesis that there is no relationship between 
reported cough and smoking against the alternative that there is a relation
ship of some sort . The chi-squared statistic is 64. 1 ,  with 2 degrees of freedom. 
This is a very unlikely value and the data are not consistent with the null 
hypothesis. 

Now, we would have got the same value of chi-squared whatever the order 
of the columns . We might expect, however, that if there were a relationship 
between reported cough and smoking, the prevalence of co gh would be 
greater for greater amounts of smoking. In other words , we look for a trend 
in cough prevalence from one end of the table to the other. We can test for 
this using the chi-squared test for trend. 

First, we define two variables , X and Y, whose values depend on the cate
gories of the row and column variables . For example, we could put X = 1 for 
non-smokers , X = 2 for occasional smokers and X = 3 for regular smokers, 
and put Y = 1 for yes and Y = 2 for no. Then for a non-smoker who coughs, 
the value of X is 1 and the value of Yis 1 .  If  there areNindividuals, we have N 
pairs of observations (x; ,y;) .  I f  there is a linear trend across the table, there 
will be linear regression of Y on X which has non-zero slope . 

Table 1 3.8. Cough during the day or at night and cigarette smoking by 
1 2-year-old boys (Bland et al. 1978) 

Boy's  smoking 

Non-smoker 

Cough 266 
No cough 1 037 

Total 1 303 

Smokes occasionally 

395 
977 

1 372 

Smokes regularly Total 

80 741 
92 2 1 06 

1 72 2847 
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We fit the usual least-squares regression line, Y = a + bX, where: 

b 
� (y; - j) (X; - X) 

� (X; - X)2 

se(b) = � � (x;
s� 

x)2 
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where s2 is the estimated variance of Y. In simple linear regression, as 
described in Chapter 1 1 , we are usually concerned with estimating b and 
making statements about its precision .  Here we are only interested in testing 
the null hypothesis that b = 0. Under the null hypothesis, the variance about 
the line is equal to the total variance of Y, since the line has zero slope. We use 
the estimate 

1 
s2 = 

N � (y; - j)2 

(We use N as the denominator here, not (N - 1 ) , because the test is condi
tional on the row and column totals as described in Appendix l 3A. There is a 
good reason for it , but it is not worth going into here . )  Hence the standard 
error of b is 

Now, b is the sum of many independent, identically distributed random vari
ables (y; - j) (x; - x), and so follows a Normal Distribution by the central 
limit theorem. As N is large, se (b) should be a good estimate of the standard 
deviation of this distribution . Hence, if the null hypothesis is true and 
E(b) = 0, blse (b ) is an observation from a Standard Normal Distribution . 
Hence the square of this , b2/se(b)2, is from a Chi-squared Distribution with 
one degree of freedom. 

b2 
se (b)2 

N � (x; - x)2 
[� (y; - j) (X; - X)]2 

� (X; - X)2 � (y; - j)2/N 
N[� CY; - J) (x; - x)]2 
� (X; - .f)2 � (y; - j)2 

For practical calculations we use the alternative forms of the sums of squares 
and products: 
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b2 
N [�Y;X; - ] 

[ (�y;)2 ] �y/ -
N 

se (b )2 

Note that it does not matter which variable is X and which is Y. The sums of 
squares and products are easy to work out . For example, for the column vari
able, X, we have 1 303 individuals with X = 1 ,  1 372 with X = 2 and 1 72 with 
X = 3. For our data we have 

Hence 

�x/ = 
�X; = 

l 2 x 1 303 + 22 x 1 372 + 32 x 1 72 = 8339 
1 x 1 303 + 2 x 1 372 + 3 x 1 72 = 4563 
(�x;)2 = 8339 - 45632 = 1 025.7 

N 2847 
�y/ = l 2 x 741 + 22 x 2 106 = 9 1 65 
�Y; = 1 x 741 + 2 x 2 106 = 4953 

(�y )2 49532 �y/ - --'- = 9 1 65 - -- = 548 . 1  
N 2847 

�X;Y; = 1 x 1 x 266 + 2 x 1 x 395 + 3 x 1 x 80 
+ 1 x 2 x 1 037 + 2 x 2 x 977 + 3 x 2 x 92 

= 7830 
(�Y;) (fa;)2 4563 x 4953 �Y;X; - = 7830 - -----

N 2847 
= - 108 .4 

2847 x ( - 1 08.4)2 
x2 = = 59.5 1 025 .7 x 548 . 1  

I f  the null hypothesis is true, x2 is an observation from the Chi-squared Dis
tribution with 1 degree of freedom. The value 59.5 is highly unlikely from this 
distribution and the trend is significant . 

We can also assess the departure from a linear regression . We subtract the 
chi-squared for trend statistic from the usual contingency table chi-squared . 
This can be used to test the null hypothesis that there is no deviation from the 
linear trend. I t  follows a Chi-squared Distribution with (r - l )(c - 1 )  - 1 
degrees of freedom . For the example, the chi-squared for deviation from the 
trend is 64. 1 - 59.5 = 4.6, with 1 degree of freedom. This i dicates that a 
linear trend does not completely explain the relationship. 

There are several points to note about this method. The choice of values for 
X and Y is arbitrary. By putting X = 1 ,  2, or 3 we assumed that the difference 
between non-smokers and occasional smokers is the same as that between 
occasional smokers and smokers. This need not be so and a di fferent choice 
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Table 1 3.9. Smoking by 1 2-year-old boys and smoking 
by their parents (Bland et al. 1978) 

Parents' smoking 

Neither One Both 
Boy's smoking smoke smokes smokes Total 

Never smoked 480 432 39 I  I 303 
Smoked only once 256 393 327 976 
Smoked occasionally 90 I47 1 59 396 
Smokes > I /week 1 3  34 45 92 
Smokes > I /day 9 25 46 80 

Total 843 103 I  968 2847 

of X would give a different chi-squared for trend statistic. The choice is not 
critical , however. 

The trend may be significant even if the overall contingency table chi
squared is not . This is because the test for trend has greater power for detect
ing trends than has the ordinary chi-squared test. On the other hand, if we 
had an association where those who were occasional smokers had far more 
symtoms than either non-smokers or regular smokers, the trend test would 
not detect it . 

There can be more than two categories for X and for Y. For example, con
sider Table 1 3 . 9 .  The overall chi-squared is 59.8 with 8 degrees of freedom 
and the trend chi-squared is 50.6 with I degree of freedom, based on dummy 
variables with equal intervals . We put X = 1 ,  2, or 3 for the parents' smoking 
and Y = 1 ,  2, 3, 4 ,  or 5 for the child 's smoking. The chi-squared about trend 
is 59 .8  - 50.6  = 9 .2  with 8 - 1 = 7 degrees of freedom . This is not signifi
cant , showing that the trend for the child to report smoking more as the 
number of parents smoking increases can explain all the association in the 
table. 

We can also apply the trend test to Table 1 3 . 1 .  The chi-squared for trend is 
1 7 .9  with 1 d . f. ,  p < 0.00 1 , and the chi-squared about trend is 9.0 with 4 
d . f. ,  p > 0.05 . The main association is an increasing tendency to be in the 
control group as we go from considerable improvement to death .  

1 3 . 5 .  Fisher's exact test 

The chi-squared test described in Section 1 3 . 1 is a large-sample test . When the 
sample is not large and expected values are less than 5, we can turn to an exact 
distribution like those for the Mann-Whitney U statistic, rank correlation 
coefficient, etc. This method is called Fisher's exact test . 

The exact probability distribution for the table can only be found when the 
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row and column totals are given . Just as with the large-sample chi-squared 
test , we restrict our attention to tables with these totals . This difficulty has led 
to much controversy about the use of this test . We shall see how the test works 
first, then discuss its applicability. 

Fisher's exact test works like this . Suppose we carry out a clinical trial and 
randomly allocate 4 patients to treatment A and 4 to treatment B. The out
come is as follows : 

Survived Died Total 
Treatment A 3 1 4 
Treatment B 2 2 4 
Total 5 3 8 

We want to know whether the difference in mortality between rhe two treat-
ments is due to chance or is evidence of a difference between the treatments. 
To do this , we first ask how many randomizations would give this outcome? 
We can see that if we keep the row and column totals constant, there are only 
4 possible tables : 

(i) s D T (ii) s D T 
A 4 0 4 A 3 4 
B 3 4 B 2 2 4 
T 5 3 8 T 5 3 8 

(iii) s D T (iv) s D T 
A 2 2 4 A 1 3 4 
B 3 4 B 4 0 4 
T 5 3 8 T 5 3 8 

These tables are found by putting the values 0, 1 ,  2, 3 in the 'A and D '  cel l .  
Any other values would make the D total greater than 3 .  

Now, let us label our subjects a to h .  The survivors we shall call a to e ,  and 
the deaths f, g, h. How many ways can these patients be arranged in two 
groups of 4 to give tables i, ii, iii and iv? 

Table i can arise in 5 ways. Patients f, g, and h would have to be in group B,  
to give 3 deaths , and the remaining member of B could be a ,  b ,  c ,  d or e. 

Table i i  can arise in 30 ways . The 3 survivors in group A can be abc, abd, 
abe, acd, ace, ade, bed, bee, bde, cde, 1 0  ways . The death in A can be f, g or h ,  
3 ways . Hence the group can be made up in 10  x 3 = 30 ways . Table i i i  is the 
same as table i i ,  with A and B reversed, so arises in 30 ways . Table iv is the 
same as table i with A and B reversed, so arises in 5 ways . 

Hence we can arrange the 8 patients into 2 groups of 4 in 5 + 30 + 30 + 5 
= 70 ways . Now, the probability of any one arrangement arising by chance is 
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1 170, since they are a l l  equally likely. I f  there are 3 deaths, table i arises from 
5 of the 70 arrangements, so had probability 5/70 = 0.07 1 .  Table ii arises 
from 30 out of 70 arrangements, so has probability 30/70 = 0.429. Similarly, 
table ii i has probability 30/70 = 0 .429, and table iv has probability 
5170 = 0 .07 1 .  

Hence, under the null hypothesis that there is no association between treat
ment and survival, table ii, which we observed, has a probability of 0.429 . It 
could easily have arisen by chance and is consistent with the nul l hypothesis. 
We should also consider tables more extreme than the observed . In this case, 
the only more extreme table is table i, where all the deaths occur in one group, 
so the probability of the observed table or a more extreme one is 
0 .07 1 + 0.429 = 0 . 5 .  

This i s  the rationale for Fisher's exact test . We calculate the probability of  
each possible table arising, under the null hypothesis. We then find the prob
ability of the observed or more extreme tables arising by chance and if this 
total probability is small (say less than 0.05) the data are inconsistent with the 
null hypothesis and we can conclude that there is evidence that an association 
exists . 

There is no need to enumerate all the possible tables, as above. The prob
ability can be found from a simple formula. If the row and column totals are 
RI • R1. cl ' and C2, the probability of observing frequencies 01 1 • 012• 022> 021 
IS 

N! x 01 1 ! x 012 ! x 022 ! x 021 ! 

(For the derivation of this see Appendix 1 3A.2 . )  We can calculate this easily 
for each possible table and so find the probability for the observed table and 
each more extreme one. For the example, we have: 

table i :  
5 !  x 3 !  x 4 !  x 4 !  

8 !  x 4 !  x O!  x 1 ! x 3 !  

5 !  x 3 !  x 4 !  x 4 !  

5 !  x 4 !  
8 !  

4 x 3 x 2 x  
8 x 7 x 6 = 0.071 

table i i :  = 0.429 
8 !  x 3 ! x l !  x 2 ! x 2 ! 

giving a total of 0.50 as before. 
Unlike the exact distributions for the rank statistics, this is fairly easy to 

calculate but difficult to tabulate. A good table of this distribution required a 
whole book (Finney et al. 1 963) .  

Fisher ' s  exact test is essentially one sided. We have only considered more 
extreme values in one direction. I t  is not clear what the corresponding devia
tions in the other direction would be, especially when all the marginal totals 
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are different . This is because the distribution is asymmetrical , unlike those of 
Sections 1 2 .2  to 1 2. 5 .  One solution is to double the one-sided probability to 
get a two-sided test when this is required , but this is more to have uniformity 
with other tests, such as chi-squared , than because two-sided probabilities are 
more meaningful than one-sided ones . 

We can apply this test to Table I 3 . 5 .  The 2 by 2 tables to be tested and their 
probabilities are: 

Table Probability 

1 3  5 0.00 1  378 2 
2 1 2  

1 4  4 0.000 075 7 
1 3  

1 5  3 0.000 001 4 
0 1 4  

The total one-sided probability i s  0.00 1  455 3 ,  which for an approximate 
two-sided test gives 0.0029 . This is considerably bigger than the probability 
for the x2 value of 1 0 .6, which is 0.001 I .  

1 3.6. Yates' continuity correction for the 2 by 2 table 

The discrepancy in probabilities between the chi-squared test and Fisher' s  
exact test arises because we are estimating the discrete distribution of the test 
statistic by the continuous Chi-squared Distribution . A continuity correction 
like those of Section 1 2 .6 ,  called Yates ' correction, can be used to improve 
the fit .  The observed frequencies change in units of one, so we make them 
closer to their expected values by one half. Hence the formula for the cor
rected chi-squared statistic for a 2 by 2 table is 

2; C I O - E l - IF 
E 

where I 0 - E l means the absolute value or modulus, without sign. For 
Table 1 3 . 5  we have: 

2; ( I 0 - E I - ± )2 
E 

C l 1 3  - 8 .4 1 - IF C l 5 - 9 .6 1 - ±)2 
--'-�����- + ������-

8 .  4 9 .6 
c 1 2 - 6 .6 1 - IF c 1 1 2  - 1 .4 1 - ±>2 

+ + ������-
6. 6 7 .4 

C4 .6 - IF (4.6 - ±)2 
8 .4 

+ 
9 .6  

C4 .6 - IF (4.6 - ±>2 
+ + 

6.6 7 .4  
= 8 .6  
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This has probability 0.0037 ,  which i s  closer to the exact probability, though 
there is still a considerable discrepancy. Of course , at such extremely low 
probabilities any approximation is liable to break down. In the critical area 
between 0 . 1 0  and 0.0 1 ,  the continuity correction usually gives a very good fit 
to the exact probability. 

13.7.  The validity of Fisher's exact test and Yates' 
correction 

There has been much dispute among statisticians about the validity of the 
exact test and the continuity correction which approximates to it . Among the 
more argumentative of the founding fathers of statistical inference, such as 
Fisher and Neyman , this was quite acrimonious . Unfortunately, the problem 
is still unresolved and still generating almost as much heat as light . 

Note that Tables 1 3 . 5  and 1 3 . 6  arose in different ways . In Table 1 3 . 5 ,  the 
column totals were fixed by the design of the experiment and only the row 
totals are from a random variable. In Table 1 3 .6 neither row nor column 
totals were set in advance. Both are from the Binomial Distribution, depend
ing on the incidence of bronchitis and prevalence of chronic cough in the 
population .  There is a third possibility, that both the row and column totals 
are fixed . This is rare in practice, but it can be achieved by the following 
experimental design. We want to know whether a subject can distinguish an 
active treatment from a placebo. We present him with 1 0  tablets, 5 of each , 
and ask him to sort the tablets into the 5 active and 5 placebo. This would give 
a 2 by 2 table, subject's choice versus truth, in which all row and column 
totals are preset to 5. There are several variations on these types of table, too . 

It can be shown that the same chi-squared test applies to all these cases 
when samples are large. When samples are small ,  this is not necessarily so. A 
discussion of the problem is well beyond the scope of this book , but it suffices 
to say that this is at root of all the conflicting statements which you may come 
across about the validity of various tests of significance in the 2 by 2 table .  

When the row and column totals are fixed, Fisher's exact test and Yates' 
correction are undoubtedly correct. For other cases they may be conserva
tive , that is, give rather larger probabilities than they should ,  or they may not. 
My own opinion is that Yates' correction and Fisher's exact test should be 
used . If  we must err, it seems better to err on the side of caution. 

1 3.8. McNemar's test for matched samples 

The chi-squared test described above enables us , among other things, to test 
the null hypothesis that binomial proportions estimated from two indepen
dent samples are the same. We shall close this chapter with the one sample or 
matched sample problem. 
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For example, Holland et al. ( 1 978) obtained respiratory symptom ques
tionnaires for 1 3 1 9  Kent schoolchildren at ages 1 2  and 1 4. One question we 
asked was whether the prevalence of reported symptoms was different at the 
two ages . At age 1 2 ,  356 (27 per cent) children were reported to have had 
severe colds in the past 1 2  months compared to 468 (35 per cent) at age 1 4 .  
Was there evidence of a real increase? 

Just as in the one-sample or paired I test (Section 1 0 .2) we would hope to 
improve our analysis by taking into account the fact that thi is the same 
sample. We might expect, for instance, that symptoms on the two occasions 
will be related. The method which enables us to do this is McNemar 's  test , 
another version of the sign test. We need to know that 2 1 2  children were 
reported to have colds on both occasions, 144 to have colds at 1 2  but not at 
1 4, 256 to have colds at 1 4  but not at 12 and 707 to have colds at neither age . 
Table 1 3 . 8  shows the data in tabular form . 

Table 13.10. Severe colds reported at two ages for 
Kent schoolchildren (Holland et al. 1 9 78) 

Severe colds at age 14 
Yes No Total 

Severe colds at age 12 Yes 2 12  144 

Total 

No 256 707 

468 851  

356 
963 

1 3 1 9  

The null hypothesis i s  that the proportions saying yes on  the first 
and second occasions are the same, the alternative being that one exceeds 
the other. This is a hypothesis about the row and column totals, quite dif
ferent from that in Section 1 3  . 1 .  If the null hypothesis were true we would 
expect the frequencies for 'yes, no' and 'no, yes' to be equal . In other 
words as many should go up as down. (Compare this with the sign test, Sec
tion 9 .2 . )  If we denote these frequencies by Oyn and 0 ny• then the expected fre
quencies will be (Oyn + Ony)/2. In the same way as Section 1 3 .2  we get the test 
statistic: 

2: (0 - £)2 

E 

( 
Oy,, 

_ Oy,, ; Ony ) 2 
Oyn + Ony 

2 

+ 

which follows a Chi-squared Distribution provided the expected values are 
large enough. There are two observed frequencies and one constraint 
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(Appendix 1 3A. l ) ,  that the sum of the observed frequencies = the sum of the 
expected frequencies . Hence there is one degree of freedom. 

The test statistic can be simplified considerably. Each term in brackets 
simplifies like this: 

Hence the test statistic is 

� (a - £)2 
E 

For Table 1 3 . 8 ,  we have 

( ayn ; any r ( ayn ; any r 
������ + �����-

2 X i X (ayn - any)2 
I 1 (ayn + any) 

(ayn - any)2 
ayn + any 

(ay,, - any)2 
ayn + any 

( 144 - 256)2 
1 44 + 256 

1 1 22 = --
400 = 3 1 .4 

This can be referred to Table 1 3 . 3  with one degree of freedom and is clearly 
highly significant. There was a difference between the two ages. As there was 
no change in any of the other symptoms studied, we thought that this was 
possibly due to an epidemic of upper respiratory tract infection just before 
the second questionnaire. 

There is a continuity correction, again due to Yates. If the observed fre
quency, ayn• increases by 1 ,  any decreases by I and (ayn - any) increases by 2 .  
Thus, half the difference between adjacent possible values is 1 and we make 
the observed difference nearer to the expected difference (zero) by 1 .  Thus the 
continuity corrected test statistic is 

< I ayn - any I - 1 )2 

ayn + any 
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For Table 1 3 . 8  this is 

{ I a yn - any I - 1 )2 

ayn + any 

( I 1 44 - 256 1 - 1 )2 

144 + 256 
( 1 1 2  - 1 )2 

= 30.8 
400 

There is very little difference because the expected ·values are so large, but i f  
the expected values are smal l ,  say less than 20, the correction is advisable. For 
very small samples , we can taken any as an observation from the binomial dis
tribution with p = 1 12 and n = ayn + any and proceed as for the sign test in 
Section 9.2 .  

Appendix 13A 

A 1 3 . l .  Why the chi-squared test works 

We noted some of the properties of the Chi-squared Distribution in 
Appendix 7 A. In particular, it is the sum of the squares of a set of indepen
dent Standard Normal variables, and if we look at a subset of values defined 
by independent linear relationships between these variables we lose one 
degree of freedom for each constraint. It is on these two properties that the 
chi-squared test depends. 

Suppose we did not have a fixed size to our streptomycin experiment, but 
allocated and observed patients as they arrived randomly. Then, in any given 
time interval the number in a given cell of the table would be from a Poisson 
Distribution and the set of Poisson variables corresponding to the cell fre
quency would be independent of one another. Our table is one set of samples 
from these Poisson Distributions. However, we do not know the expected 
values of these distributions under the null hypothesis; we only know their 
expected values if  the table has the row and column totals we observed . We 
can only consider the subset of outcomes of these variables which has the 
observed row and column totals . The test is said to be conditional on these 
row and column totals . 

The mean and variance of a Poisson variable are equal (Section 6 .  7 ) .  If the 
null hypothesis is true, the means of these variables will be equal to the 
expected frequency calculated in Section 1 3  . 1 .  Thus a, the observed cell fre
quency, is from a Poisson Distribution with mean E, the expected cell fre
quency, and standard deviation .J E. Provided E is large enough, this Poisson 
Distribution will be approximately Normal . Hence (a - E)/.JE is from a 
Normal Distribution mean 0 and variance 1 .  Hence if we find 
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this is the sum of  a set of Normally distributed random variables , mean 0 and 
variance I ,  and so is from a Chi-squared Distribution . 

We shall now find the degrees of freedom . Although the underlying vari
ables are independent, we are only considering a subset defined by the row 
and column totals . Consider the following table: 

Total 

01 1 012 R 1  
021 022 R1 

Total cl C2 N 

The values 01 1 to 022 are the observed frequencies, R1 , R2 the row totals, etc .  
Denote the corresponding expected values by £1 1 to  £22. There are three linear 
constraints on the frequencies : 

01 1 + 012 + 021 + 022 = N 
01 1  + 012 = R1  
01 1  + 021 = C1 

Any other constraint can be made up of these . For example, we must have 

021 + 022 = R1 

This can be found by subtracting the second equation from the first . On the 
left side 

01 1 + 012 + 021 + 022 - (01 1  + 012 ) = 021 + 022 

On the right side 

N - R1 = R2 

Each of these l inear constraints on 011 to 022 is also a linear constraint on 
(01 1 - E1 1 )/.JE1 1 to (022 - £22 )/.J£22 . We can see this by replacing 01 1 by 

(01 1  - E1 1 ) 
.JE1 1  

etc . in the equations . This gives the required linear constraints . 
There are four observed frequencies and so four (0 - E)/.JE variables, 

with three constraints . We lose one degree of freedom for each constraint and 
so have 4 - 3 = I degree of freedom. 

If we have r rows and c columns, then we have one constraint that the sum 
of the frequencies is N. Each row must add up, but when we reach the last row 
the constraint can be obtained by subtracting the first ( r - 1) rows from the 
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grand total . The rows contribute only (r - I )  further constraints . Similarly 
the columns contribute (e - I) constraints. Hence, there being re frequenciei' ,  
the degrees of  freedom are 

re - I - (r - I )  - ( e - I )  = re - I - r + I - e + I 
= re - r - e + I 
= (r - l )(e - I )  

So we have degrees o f  freedom given by the number o f  rows minus one times 
the number of columns minus one. 

1 3A . 2 .  Derivation of the formula for Fisher's exact test 

The derivation of Fisher's formula is not difficult for the algebraically 
minded. Remember that the number of ways of choosing r things out of n 
things (Appendix 6A) is n ! lr ! (n - r) !  Now, suppose we have a 2 by 2 table 
made up of N individuals: 

Total 

01 1  012 R 1 
021 022 R1 

Total cl C2 N 

First, we ask how many ways N individuals can be arranged to give marginal 
totals, R 1 ,  R2, C1 and C2. They can be arranged in columns in N! /C1 ! C2 ! ,  
since we are choosing C1 objects out of N, and in rows N! /R 1 ! R2 ! ways . 
(Remember N - C1 = C2 and N - R1 = R2. )  Hence they can be arranged in 

N! N! 
--- x ---

C1 ! C2 ! R 1 ! R2! 

ways . For example, the table with totals 

can happen in 

4 
4 

5 3 8 

N!N! 

8 !  8 !  
--- x --- = 56 x 70 = 3620 ways 
5 ! x 3 ! 4 ! x 4 ! 

As we saw in Section 1 3 . 5 ,  the columns can be arranged in 70 ways . Now 
we ask, of these ways how many make up the particular table? We are now 
dividing the N into four groups of sizes 01 1 ,  012, 021 and 012 . We can 
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choose the first group in N! /01 1 ! (N - 01 1 ) ! ways , as before. We are now 
left with N - 01 1 individuals, so we can choose 012 in (N - 01 1 ) ! /012 !  
(N - 01 1 - 012 ) !  ways . We are left with N - 01 1 - 012, and so we choose 021 
in (N - 01 1  - 012 ) ! /021 ! (N - 01 1 - 012 - 021 ) !  ways . This leaves 
N - 01 1 - 012 - 021 , which is ,  of course, equal to 022 and so 022 can only be 
chosen in one way. Hence we have altogether: 

N! 
------- x --------- x -----------
011 ! x (N - 01 1 ) !  012 ! x (N - 01 1 - 0,2 ) !  021 ! x (N - 01 1 - 012 - 012 ) !  

N! 
01 1 ! x 012 ! x 021 !  x (N - 01 1 - 012 - 012 ) !  

N! 

because N - 01 1 - 012 - 012 = 022. So out of the 

N! x N! 

possible tables , the given table arises in 

N! 

ways . The probability of this table arising by chance is 

N! 
01 1 ! x 012 ! x 021 ! x 022 ! 

N! x N! 

Exercise 1 3M 

(Each branch is either true or false . )  

1 .  I n  a chi-squared test for a 5 b y  3 contingency table: 

(a) variables must be quantitative; 
(b) observed frequencies are compared to expected frequencies; 

(c) there are 1 5  degrees of freedom; 

(d) at least 1 2  cells must have expected values greater than 5 ;  
(e) all the observed values must be greater than 1 .  
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2. The standard chi-squared test for a 2 by 2 contingency table is not valid 

unless: 

(a) all the expected frequencies are greater than five; 

(b) both variables are continuous; 
(c) at least one variable is from a Normal Distribution; 

(d) all the observed frequencies are greater than five; 

(e) the sample is very large. 

3. In Table 13M. 1 :  

Table 13M.1. Cough first thing in the morning in a group of schoolchildren, a s  
reported b y  the child and b y  the child's parents [Bland et  al. 1 9 79) 

Child's report 
Parents' report Yes No Total 

Yes 29 104 1 33  
No  1 72 5097 5269 

Total 201 520 1 5402 

(a) the association between reports by parents and children can be tested by a 
chi-squared test; 

(b) the difference between symptom prevalence as reported by children and 
parents can be tested by McNemar's test ; 

(c) if McNemar's  test is significant, the contingency chi-squared test is not 
valid; 

(d) the contingency chi-squared test has one degree of freedom; 

(e) it would be important to use the continuity correction in the contingency 
chi-squared test . 

4.  McNemar's test could be used: 

(a) to compare the numbers of cigarette smokers among cancer cases and 
age- and sex-matched healthy controls; 

(b) to examine the change in respiratory symptom prevalence in a group of 
asthmatics from winter to summer; 

(c) to look at the relationship between cigarette smoking and respiratory 
symptoms in a group of asthmatics; 

(d) to examine the change in PEFR in a group of asthmatics from winter to 
summer; 
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(e) to compare the number of cigarette smokers among a group of cancer 
cases and a random sample of the general population. 

5.  Fisher's exact test for a contingency table: 

(a) applies to 2 by 2 tables; 
(b) gives a larger probability than the ordinary chi-squared test ; 
(c) gives about the same probability as the chi-squared test with Yates' con

tinuity correction; 
(d) is suitable when expected frequencies are small ;  
(e) is difficult to calculate when the expected frequencies are large . 

Exercise 1 3E 

In this exercise we shall look at some data assembled to test the hypothesis 
that there is a considerable increase in the number of admissions to geriatric 

Table 13E.1.  Mean peak daily temperatures for each week from 
May to September of 1 982 and 1 983, with geriatric admissions in 
Wandsworth (Fish et al. 1 985) 

1 982 1 983 

Mean peak Mean peak 
Week temperature (0C) Admissions temperature (0C) Admissions 

1 1 2 .4 24 1 5 . 3  20 
2 1 8 . 2  22 14 .4 1 7  
3 20.4 2 1  1 5 . 5  2 1  
4 1 8 . 8  22 1 5 .6  1 7  
5 25 . 3  24 19 .6  22 
6 23 .2  15  2 1 .6 23 
7 1 8 . 6  2 3  1 8 . 9  20 
8 1 9. 4  2 1  22.0 16 
9 20.6 18 2 1 .0 24 

1 0  23 .4 21  26.5 2 1  
1 1  22.8 1 7  30.4 20 
1 2  2 1 .7  I I  25 .0 25 
1 3  22.5 6 27.3 22 
14 25 . 7  1 0  22.9 26 
1 5  23 .6  1 3  24 . 3  1 2  
1 6  20.4 1 9  26 .5  33 
17  1 9 .6 13 25.0 19 
1 8  20.2 1 7  2 1 .2 2 1  
1 9  22.2 10 1 9.7  28 
20 23 . 3  1 6  16 .6  19  
21  1 8 . 1  24 1 8 .4 1 3  
22 1 7 . 3  1 5  20.7 29 
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wards during heatwaves . Table 1 3E. l shows the number of admissions to 
geriatric wards in a health district for each week during the summers of 1 982,  
which was cold,  and 1 983 ,  which was hot . Also shown are the average of  the 
daily peak temperatures for each week. 

1 .  When do you think the heatwave began and ended? 

2. How many admissions were there during the heatwave and in the cor
responding period of 1 982? Would this be sufficient evidence to conclude 
that heatwaves produce an increase in admissions? 

3 .  We can use the periods before and after the heatwaves weeks as controls 
for changes in other factors between the years. Divide the years into three 
periods - before, during, and after the heatwave - and set up a two-way 
table of numbers of admissions, period by year . 

4. We can use this table to test for a heatwave effect . State the null 
hypothesis and calculate the frequencies expected if the null hypothesis were 
true. 

5. Test the null hypothesis. What conclusions can you draw? 

6. What other information could be used to test the relationship between 
heatwaves and geriatric admissions? 



1 4 .  Choosing the statistical 
method 

14.1.  Method-orientated and problem-orientated teaching 

Most statistical textbooks are method orientated. They present related statis
tical methods together, rather than related statistical problems. This book is 
no exception. Thus the comparison of two groups is dealt with in Sections 
8 . 5 ,  8 .6 ,  9 .7 ,  9 . 8 ,  1 0 . 3 ,  1 2 .2,  1 3 . 1 ,  1 3 . 5 ,  and 1 3 .6 ,  depending on whether the 
sample is large or small, the data Normally distributed, ordinal , nominal or 
dichotomous .  On the other hand, all the methods involving rank statistics are 
together in Chapter 1 2 .  This structure is almost dictated by the subject 
matter, as it is easier to introduce some methods in the context of one 
problem, others in another . The use of the t Distribution, for example, is 
easier to introduce with the one-sample problem, but rank methods seem to 
me more obvious in the two-sample comparison. 

This leads to difficulties for two groups of readers: the applier of statistics 
searching for the right method of analysis for the data and the student trying 
to answer a question in an exam . This and the next two chapters use a 
problem-orientated approach instead. We start with the problem and 
develop the statistical method required for its solution . Chapter 1 5  deals with 
some problems in clinical medicine and Chapter 16 mainly with problems in 
population study. In this chapter we deal with the three most common 
problems in statistical inference: 

(a) comparison of two independent groups of subjects, for example, two 
groups of patients given different treatments; 

(b) comparison of the response of one group under different conditions, as 
in a cross-over trial , or of matched · pairs of subjects, as in some case
control studies; 

(c) investigation of the relationship between two variables measured on the 
same sample of subjects . 

This chapter acts as a sort of map of the methods described in Chapters 8- 1 3 .  
As we discussed i n  Section 1 2 .  7 ,  there are often several different approaches 
to even a simple statistical problem. The methods described here and recom
mended for particular types of question may not be the only methods, and 
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may not always be universally agreed as the best method. Statisticians are at 
least as prone to disagree as clinicians. However, these would usually be con
sidered as valid and satisfactory methods for the purposes for which they are 
suggested here. 

14.2.  Types of data 

The study design is one factor which determines the method of analysis, the 
variable being analysed is another. We shall therefore classify variables into 
five types as follows . 

(a) Interval scales The interval or distance between points on the scale 
has precise meaning, and a change in one unit at one scale point is the same as 
a change in one unit at another. For example, temperature and time are 
interval scales, whereas anxiety score calculated from a questionnaire is not. 
We can add and subtract on an interval scale. 

(b) Ordinal scale The scale enables us to order the subjects, from that 
with the lowest value to that with the highest. Any ties which cannot be 
ordered are assumed to be because the measurement is not sufficiently 
precise. 

(c) Ordered nominal scale We can group subjects into several categories, 
which have an order. For example, we can ask patients if  their condition is 
much improved, improved a little, no change, a little worse, much worse. 

(d) Nominal scale We can group subjects into categories which need not 
be ordered in any way. Eye colour is measured on a nominal scale. 

(e) Dichotomous scales Subjects are grouped into only two categories, 
for example: survived or died. This is a special case of the nominal scale. 

Clearly these classes are not mutually exclusive, and an interval scale is also 
ordinal . Sometimes it is useful to apply tests for a lower level of measure
ment , ignoring some of the information. 

Interval scales allow us to calculate means and variances, and to find 
standard errors and confidence intervals for these. For example, in compar
ing two groups we can find the difference in mean between them, and 
estimate limits within which this should lie in the population from which the 
sample was drawn. This is clearly a great advantage over simply saying a dif
ference is l ikely to exist, or that it may not. In particular, if a difference is 'not 
significant' we want to know what the maximum size of the difference could 
reasonably be expected to be. 

For large samples , the estimation of confidence intervals presents no 
problem, as the means will be Normally distributed and the variances reason
ably good estimates of their population values . For small samples , say less 
than 1 00 in a sample, we must assume that the observations themselves are 
from a Normal Distribution .  Many interval scales do follow a Normal Distri
bution, and if  not they can often be made to do so by a suitable transforma-
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tion . Provided the assumption of a Normal Distribution is valid, methods 
based on this are the most powerful available. If Normal assumptions do not 
apply, methods based on ranks can be used . 

For the ordinal and lower levels of measurement , most simple analyses 
produce tests of significance only which, as we have indicated , are less satis
factory . The only exception so far discussed is the confidence interval for the 
difference between two proportions. 

14.3. Comparing two groups 

The methods used for comparing two groups are summarized in Table 1 4 . 1 .  
(a) Interval data For large samples, say more than 50 in each group, con

fidence intervals for the mean can be found by the Normal approximation 
(Section 8 .5 ) .  For smaller samples , confidence intervals for the mean can be 
found using the t Distribution provided the data follow . or can be trans
formed to a Normal Distribution (Section 10 . 3 ,  10 .4) .  I f not, a significance 
test of the null hypothesis that the means are equal can be carried out using 
the Mann-Whitney U test (Section 1 3 . 1 ) .  This can be useful when the data are 

Table 14.1. Methods for comparing two samples 

Type of data 

Interval 

Ordinal 

Nominal, ordered 

Nominal, not 
ordered 

Dichotomous 

Size of sample 

large, > 50 each 
sample 

small, < 50 each 
sample, with 
Normal Distribution 

small, < 50 each 
sample, non-Normal 

any 

large, most expected 
frequencies > 5 

large, most expected 
frequencies > 5 

small, more than 20% 
expected frequencies 
< 5 

large, all expected 
frequencies > 5 

small, at least one 
expected frequency 
< 5 

Method 

Normal Distribution 
for means 

t Distribution for 
means 

Mann-Whitney U test 

Mann-Whitney U test 

chi-squared for 
trend 

chi-squared test 

reduce number of 
categories by 
combining or 
excluding as 
appropriate 

Confidence interval 
for proportions, 
chi-squared test 

chi-squared test 
with Yates' 
correction, 
Fisher's exact test 

Section 

(8 .5 ,  9 .7)  

( 1 0 .3)  

( 1 2 .  I )  

( 1 2 . 1 )  

( 1 3 .4) 

( 1 3 .  I )  

( 1 3 . 2) 

(8 .6,  9 .8)  
( 1 3 . 1 )  

( 1 3 .6) 
( 1 3 .5)  
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censored, that is ,  there are values too small or too large to measure. This 
happens , for example, when concentrations are too small to measure and are 
labelled 'not detectable' . 

Provided that data are Normally distributed, it is possible to compare the 
variances of the groups . This is done by the F test, not included in this book 
(see Armitage 1 97 1 ;  Snedecor and Cochran 1 980) . 

(b) Ordinal data The tendency for one group to exceed members of  the 
other is tested by the Mann-Whitney U test (Section 1 2 . 1 ) .  

(c) Ordered nominal data First the data are set out as a two-way table, 
one variable being group and the other the ordered nominal data. A chi
squared test (Section 1 3 . 1 )  will test the null hypothesis that there is no rela
tionship between group and variable, but takes no account of the ordering. 
This is done by using the chi-squared test for trend, which takes the ordering 
into account and provides a much more powerful test (Section 1 3 .4) . 

(d) Nominal data Set the data out as a two-way table as described in (c) 
above. The chi-squared test for a two-way table is the appropriate test (Sec
tion 1 3  . 1 ) .  The condition for validity of the test , that at least 80 per cent of the 
expected frequencies should be greater than 5, must be met by combining or 
deleting categories as appropriate (Section 1 3 .2). If  the table reduces to a 2 by 
2 table without the condition being met, use Fisher's exact test as described in 
(e) below. 

(e) Dichotomous data For large samples, either present the data as two 
proportions and use the Normal approximation to find the confidence 
interval for the difference (Section 8 .6), or set the data up as a 2 by 2 table and 
do a chi-squared test (Section 1 3 . 1 ) .  These are equivalent methods. If the 
sample is small , the fit to the Chi-squared Distribution can be improved by 
using Yates ' correction (Section 1 3 .6) . Alternatively, use Fisher ' s  exact test 
(Section 1 3 .5 ) .  

14.4. One sample and paired samples 

Methods of analysis for paired samples are summarized in Table 1 4 .2 .  
(a) Interval data Inferences are on differences between the variable as 

observed on the two conditions . For large samples, say > 100, the confidence 
interval for the mean difference is found using the Normal approximation 
(Section 8 .3 ) .  For small samples, provided the differences are from a Normal 
Distribution, use the paired t test (Section 1 0 .2). This assumption is often 
very reasonable, as most of the variation between individuals is removed and 
random error is largely made up of measurement error. Furthermore, the 
error is the result of two added measurement errors and so tends to Normality 
anyway. If not , transformation of the original data will often Normalize 
differences (Section 10 .4). If no assumption of Normality can be made, 
use the Wilcoxon signed-rank matched-pairs test (Section 12 .2) .  Here the 
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Table 14.2. Methods for differences in one or paired sample 

Type of data 

Interval 

Ordinal 

Nominal , ordered 

Nominal 

Dichotomous 

Size of sample 

large, > 1 00 

small, < 1 00, Normal 
differences 

small, < 1 00, 
non-Normal 
differences 

any 

any 

any 

any 

Method 

Normal Distribution 

Paired t method 

Wilcoxon matched-pairs 
test 

sign test 

sign test 

see Maxwell ( 1 970) 

McNemar's test 

assumption is that the differences are ordinal . 
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Section 

(8 .3)  

( 1 0 .2) 

( 1 2 .2) 

(9.2) 

(9.2) 

(not in book) 

( 1 3 .8) 

It is rarely asked whether there is a difference in variability in paired data. 
This can be tested by finding the differences between the two conditions and 
their sum. Then if  there is no change in variance the correlation between dif
ference and sum has expected value zero . This is by no means obvious, but it 
is true. Think about it. 

(b) Ordinal data If  the data do not form an interval scale, as noted in 
Section 14.2 the difference between conditions is not meaningful .  However, 
we can say what direction the difference is in, and this can be examined by the 
sign test (Section 9.2) .  

(c) Ordered nominal data Use the sign test , with changes in one direction 
being positive, in the other negative, no change as zero (Section 9 .2) .  

(d) Nominal data With more than two categories , this is  difficult . There 
is a test (see Maxwell 1 970). The calculation is difficult , as it involves invert
ing a matrix, so I have not included it. It is a generalization to more than two 
categories of McNemar's test (Section 1 3 . 8) .  

(e) Dichotomous data Here we are comparing the proportions of indi
viduals in a given state under the two conditions. The appropriate test is 
McNemar's test (Section 1 3 .8 ) .  

14.5.  Relationship between two variables 

The methods for studying relationships between variables are summarized in 
Table 1 4 . 3 .  Relationships with dichotomous variables are studied as the dif
ference between two groups in Section 14 . 3 ,  the groups being defined by the 
two states of the dichotomous variable. Dichotomous data have been 
excluded from this section . 

(a) Interval and interval data Two methods are used : regression and 



Table 14.3. Methods for relationships between variables 

Interval 
Normal 

Interval, 
non-Normal 

Ordinal 

Nominal, 
ordered 

Nominal 

Dichotomous 

Interval, 
normal 

regression ( 1 1 .3)  
correlation ( 1 1 .  l 0) 

I nterval, 
non-Normal Ordinal 

regression ( 1 1 . 3 )  rank 
rank correction correlation 
( 1 2 . 3 ,  1 2.4) ( 1 2 . 3 ,  1 2.4) 

rank rank 
correlation correlation 
( 1 2 . 3 ,  1 2 .4) ( 1 2 . 3 ,  1 2.4) 

rank 
correlation 
( 1 2 . 3 ,  1 2.4) 

Nominal , 
ordered 

rank 
correlation 
( 1 2.4) 

rank 
correlation 
( 1 2 .4) 

rank 
correlation 
( 12 .4) 

chi-squared 
test for 
trend 
( 1 3 .4) 

Nominal 

analysis of 
variance 
(not in  
book) 

analysis of 
variance by 
ranks (not 
in book) 

analysis of 
variance by 
ranks (not 
in book) 

chi-squared 
test ( 1 3 . 1 )  

chi-squared 
test ( 1 3 . 1 )  

Dichotomous 

I test ( 1 0.3 )  
Normal test (8 .5 )  

large sample 
Normal test (8 .5) 
Mann-Whitney 
U test ( 1 2 . 1 )  

Mann-Whitney 
U test ( 1 2. l )  

Chi-squared 
test for trend 
( 1 3  .4) 

chi-squared 
test ( 1 3 . 1 )  

chi-squared 
( 1 3 .  l ,  1 3 .6) 
Fisher's exact 
test ( 1 3 .5) 
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0 

9 
0 0 "' s· 

()Q 
s:. en 
"' 
0 -u;· -c=;· e.. 
!3 
en -
� 0 
r:l. 



Relationship between two variables 2 7 1  

correlation . Regression (Sections 1 1 . 3 ,  1 1 . 5) i s  usually preferred, as  i t  gives 
information about the nature of the relationship as well as about its existence. 
Correlation (Section 1 1 . 1 0) measures the strength of the relationship . For 
regression, residuals about the line must be Normally distributed with 
uniform variance . The correlation coefficient requires an assumption that 
both variables follow a Normal Distribution, but to test the null hypothesis 
only one variable needs to be Normally distributed . 

If neither variable can be assumed to be Normally distributed nor trans
formed to it (Section 1 1 .8) ,  use rank correlation (Sections 1 2 . 3 ,  1 2 .4) . 

(b) Interval and ordinal data Rank correlation coefficient (Sections 
12 . 3 ,  1 2.4) . 

(c) Interval and ordered nominal data This can be approached by rank 
correlation, using Kendall 's 7 (Section 1 2 .4) because it copes with the large 
number of ties better than does Spearman's p, or by analysis of variance as 
described in (d) below. The latter requires an assumption of Normal Distribu
tion and uniform variance for the interval variable. These two approaches are 
not equivalent. 

(d) Interval and nominal data If  the interval scale is Normally distri
buted, use one-way analysis of variance. This is not included in this book (see 
Armitage 1 97 1 ;  Snedecor and Cochran 1980) . The assumption is that within 
categories the interval variable is Normally distributed with uniform 
variance. If  this assumption is not reasonable, use analysis of variance by 
ranks ,  which has also been omitted (see Seigel 1 956; Conover 1 980) . 

(e) Ordinal and ordinal data Use a rank correlation coefficient, 
Spearman's p (Section 1 2 .3 )  or Kendall ' s  7 (Section 1 2 .4). Both will give very 
similar answers for testing the null hypothesis of no relationship in the 
absence of ties . For data with many ties and for comparing the strengths of 
different relationships, Kendall 's 7 is preferable. 

(f) Ordinal and ordered nominal data Use Kendall 's rank correlation 
coefficient, 7 (Section 1 2 .4). 

(g) Ordinal and nominal data Use one-way analysis of variance by 
ranks, not included in this book (see Seigel 1 956; Conover 1 980) . 

(h) Ordered nominal and ordered nominal data Use chi-squared for 
trend (Section 1 3 .4) . 

(i) Ordered nominal and nominal data Use the chi-squared test for a 
two-way table (Section 1 3 . 1 ) .  

( j )  Nominal and nominal data Use the chi-squared test for a two-way 
table (Section 1 3 . 1 ) , provided the expected values are large enough. Other
wise use Yates ' correction (Section 1 3 .6) or Fisher' s  exact test ( 1 3 .5 ) .  
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Exercise 14M 

(Each branch is either true or false . )  

1 .  The following variables have interval scales o f  measurement: 

(a) height ; 

(b) presence or absence of asthma; 

(c) Apgar score; 

(d) age; 

(e) forced expiratory volume. 

2. The following methods may be used to investigate a relationship between 

two continuous variables: 

(a) paired t test ; 

(b) the correlation coefficient , r; 

(c) simple l inear regression; 

(d) Kendall ' s  T; 
(e) Spearman's p. 

3. Ten men were given a drug and a placebo on alternate days in random 

order. The exact time for which the patients could exercise until angina 

or fatigue stopped them was measured . Methods which could be used to 

investigate the existence of a treatment effect include: 

(a) Mann-Whitney U test; 

(b) paired t method; 

(c) sign test ; 

(d) Normal confidence intervals for the mean difference; 

(e) Wilcoxon matched-pairs test . 

4.  When analysing categorical variables the following statistical methods 

may be used: 

(a) simple linear regression; 

(b) correlation coefficient, r; 

(c) paired t test ; 
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(d) Kendall ' s  T ;  
(e) chi-squared test . 

5.  To compare levels of a continuous variable in two groups, possible 

methods include: 

(a) the Mann-Whitney U test; 

(b) Fisher's exact test ; 

(c) a t  test; 

(d) Wilcoxon matched-pairs test ; 
(e) the sign test. 

Exercise 14E 

In  this exercise we shall look at a number of statistical problems. The object is 
not to carry out calculations, but to decide which statistical method is appro
priate. If you wish, you can carry out the calculations for practice, but only 
brief solutions are given. Sometimes more than one of the methods discussed 
in this book are possible, as well as others which we have not discussed . 

1 .  In  a cross-over trial to compare two appliances for ileostomy patients, 
of 14 patients who received system A first, 5 expressed a preference for A, 9 
for system B and none had no preference. Of the patients who received 
system B first, 1 preferred A, 5 preferred B and 4 had no preference. How 

Table 14E.1.  Gastric pH and urinary nitrite concentrations in 2 6  subjects (Hall 
and Northfield 1 985} 

pH Nitrite pH Nitrite 

5 . 7 1  2 1 .9 5 . 55  83 .8  
5 . 1 8  0.0 1 .93 7. 1 3  
2 .94 6.53 2 . 1 7  1 .48 
2 . 1 1  0 . 1 9  4.94 55.6 
6 .03 19 .5  2.03 1 5 . 7  
2 .64 2 . 33 2.73 52 
4 .07 22.7 1 .94 12 . 1 
5 . 86 3 .26 1 . 72 1 .64 
4 .9 1  1 7 . 8  5 . 3 1  43.9 
2 . 1 7  9 .36 5 .29 50.6 
5 .5  35 .2  5 .90 63.4 
5 . 9 1  8 1 .2 5 .77 48.9 
5 . 59 8 1 .8 5 .59 52.5 
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would you decide whether one treatment was preferable? How would you 
decide whether the order of treatment influenced the choice? 

2. Table 14E .  l shows the pH and nitrite concentrations in samples of 
gastric fluid from 26 patients. A scatter diagram is shown in Fig. 1 4E .  l .  How 
would you assess the evidence of a relationship between pH and nitrite con
centration? 
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Fig. 14E.1 Gastric pH and urinary nitrite. 

3 .  There is some concern about the number of instrumental deliveries 
experienced by women receiving epidural anaesthesia during labour. It is 
hoped that an improved epidural regime will reduce this . How do you decide 
how many women will be needed for a trial? 

4 .  In a trial of screening and treatment for mild hypersion (Reader et al. 
1 980), 1 1 38  patients completed the trial on active treatment, with 9 deaths, 
and 1 080 completed on placebo, with 1 9  deaths. A further 5 83 patients 
allocated to active treatment withdrew, 6f whom 6 died, and 626 allocated to 
placebo withdrew, of whom 1 6  died during the trial period. How would you 
decide whether screening and treatment for mild hypertension reduces the 
risk of dying? 

5 .  Burr et al. ( 1 976) tested a procedure to remove house-dust mites from 
the bedding of adult asthmatics in attempt to improve subjects' lung func
tion, which they measured by PEFR. The trial was a two-period cross-over 
design, the control or placebo treatment being thorough dust removal from 
the living room. The mean PEFRs in the 32 subjects were: 

active treatment: 
placebo treatment: 

335 litre/min, s .e .  1 9 . 6  litre/min 
329 litre/min, s .e .  = 20. 8  litre/min 



differences within 
subjects (treatment -

Exercise 14E 

placebo) : 6.45 litre/min, s .e .  = 5 .05 litre/min 

How would you decide whether the treatment improves PEFR? 

2 7 5  

6 .  Table 1 4E .2  shows the relationship between age of onset of asthma in  
children and maternal age a t  the child ' s  birth. How would you test whether 
these were related? The children were all born in one week in March, 1 958 .  
Apart from the possibility that young mothers in general tend to have 
children prone to asthma, what other possible explanations are there for this 
finding? 

Table 14E.2. Asthma or wheeze by mater
nal age 

Mother's age at child's bith 

AW reported 1 5- 1 9  20-29 30 + 

Never 261 401 7  2 1 46 
Onset by age 7 103 984 487 
Onset from 8 to 1 1  27 189 95 
Onset from 1 2  to 1 6  20 1 57 67 

7 .  The lung function of 79 children with a history of hospitalization for 
whooping cough and 1 78 children without a history of whooping cough, 
taken from the same school classes, was measured . The mean transit time for 
the whooping cough cases was 0.49 s (s .d .  = 0. 14  s) and for the controls 
0.47 s (s .d .  = 0. 1 1  s), ( Johnston et al. 1 983) .  Was there a difference in lung 
function between children who had had whooping cough and those who had 
not? Each case had two matched controls. If you had all the data, how could 
you use this information? 



1 5 . Clinical measurement 

1 5 . 1 .  Repeatability and precision in measdrement 

In  this chapter we shall look at a number of problems associated with clinical 
measurement. These include how precisely we can measure, how different 
methods of measurement can be compared, how measurements can be used 
in diagnosis, and how to deal with incomplete measurements of survival . 

We have already discussed some factors which may produce bias in mea
surements (Sections 2 .7 ,  2 .8 ,  3 .9) . We have not yet considered the natural 
biological variability, in subject and in measurement method, which may 
lead to measurement error. For example, in the measurement of blood pres
sure we are dealing with a quantity that varies continuously, not only from 
heart beat to heart beat but from day to day, season to season, and even with 
the sex of the measurer. The measurer, too, will show variation in the percep
tion of the sound and reading of the manometer. Because of this, most 
clinical measurements cannot be taken at face value without some considera
tion being given to their error . 

The measurement of measurement error is not difficult in principle . To do 
it we need a set of duplicate readings, obtained, say, by measuring each 
member of a sample of subjects twice. We can then estimate the standard 
deviation of repeated measurements on the same subject, which is one 
possible method of representing measurement error . If the pairs of measure
ments are X; and Y; for i = 1 to n, the best estimate of the error standard 
deviation (see Appendix 1 5A) is given by 

S = � 2� � (X; - y;)2 

Table 1 5 .  l shows some replicated measurements of peak expiratory flow 
rate, made with a Wright Peak Flow Meter (see Section 10.2) .  It also shows 
the differences between the first and second measurements and their sum of 
squares. We get a very small mean difference, of 4.9 litre/min, suggesting 
that there is little tendency for the second or first reading to be larger. The 
standard deviation of the measurement error is 1 5  litre/min, to two signifi
cant figures . There are a number of ways in which the measurement error 
may be presented to the user of the measurement. It may be as the standard 
deviation calculated above, or it may be, as recommended by the British 
Standards Institution ( 1 979), the value below which the difference between 
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Table 15.1.  Pairs of readings made with a Wright Peak Flow 
Meter on 1 7  healthy volunteers, with the calculation of 
repea ta bili ty 

Subject First PEFR Second PEFR Difference 
number (litre/min) (litre/min) First - Second squared 

I 494 490 4 1 6  
2 395 397 - 2  4 
3 5 1 6  5 1 2  4 1 6  
4 434 40 1 33 1 089 
5 476 470 6 36 
6 557 6 1 1  - 54 29 1 6  
7 4 1 3  4 1 5  - 2  4 
8 442 43 1 1 1  1 2 1  
9 650 638 1 2  1 44 

1 0  433 429 4 1 6  
I I  4 1 7  420 - 3  69 
1 2  656 633 23 529 
1 3  267 275 - 8  64 
1 4  478 492 - 1 4 1 96 
1 5  1 78 1 65 1 3  1 69 
1 6  423 372 5 1  2601 
1 7  427 42 1 6 36 

Total 15 228 84 7966 

Mean 447 .9 4 .9 
Total/Zn = s2 234.3 
s 1 5 . 3  

2 7 7  

two measurements will l i e  with probability 0.95 .  Provided the measurement 
errors are from a Normal Distribution, this is estimated by 1 .96 x .J(2s2), or 
2 . 8s. 

It may also be reported as the coefficient of variation, which is the standard 
deviation divided by the mean, often multiplied by 100 to give a percentage. I 
do not like this statistic much, as its value depends on both the standard 
deviation and the mean. Small means produce large coefficients of variation.  
For our data the coefficient of variation is 1 5 . 3/447 .9 = 0.034 or 3 .4 per 
cent . The difference between the observed value, with measurement error, 
and the subject' s  true value will be at most two standard deviations with 
probability 0 .95 , provided the sample is large enough, and so we may have 
the accuracy quoted as to within 2s, 2 x 1 5 .3 = 30 litre/min, or 
2 x 1 5 .3 /447 . 9  = 0.068 , or 7 per cent .  The trouble with quoting the error as a 
percentage is that 7 per cent of the smallest observation, 1 65 litres , is only 1 2  
litre/min,  compared t o  7 per cent o f  the largest , 656, which i s  46 litre/min.  
This is not a good method if  the range is  great compared to the size of the 
smallest observations and the error does not depend on the value of the mea
surement . It is a good method if the standard deviation is proportional to the 
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Fig. 15.1 Absolute difference versus mean for 17 pairs of Wright peak flow 
meter measurements. 

mean . In that case a logarithmic transformation can be used, and the antilog 
of two standard deviations gives the number corresponding to 0.068 in the 
example. If we multiply this by 100, it will give the measurement error as a 
percentage of the measurement wherever we are on the scale. The use of 
logarithmic transformations is discussed in Section 10.4. 

We should check to see whether the error does depend on the value of  the 
measurement, usually being larger for larger values . We can do this by 
plotting a scatter diagram of the absolute value of the difference and the sum 
or mean of the two observations (Fig. I 5 .  I) . For the PEFR data, there is no 
obvious relationship. We can check this by calculating a correlation (Section 
I I .  I O) or rank correlation coefficient (Sections I 2.4, I 2.5 ) .  For Fig. I 5 .  I we 
have r = 0.20, p = 0.4, so there is little to suggest that the measurement error 
is related to the size of the PEFR. 

15;2.  Digit preference 

One of the constraints on the accuracy of measurement is the measurement 
instrument itself. A clinical thermometer might be graduated in fifths of a 
degree, and attempts to read temperature to a tenth of a degree will be at best 
approximations. Even reading to the nearest fifth of a degree may be suspect, 
as it will often be difficult to decide whether a point between two divisions is 
nearer one line or another . This is complicated by the fact that most of us 
under these circumstances tend to prefer some terminal digits over others . In 
Table I 5 .  I there is little evidence of this and only 9 seems at all under
represented. Table I 5 .2 shows corresponding data, obtained for the same 
subjects at the same time, using a different instrument, the Mini Wright Peak 
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Table 15.2 .  Pairs of  readings made with a mini-Wright Peak Flow Meter on 1 7  
healthy volunteers 

Subject First PEFR Second PEFR 
number (l i tre/min) (l i tre/min) 

I 5 1 2  525 
2 430 4 1 5  
3 520 508 
4 428 444 
5 500 500 
6 600 625 
7 364 460 
8 380 390 
9 658 642 

IO  445 432 
I I  432 420 
1 2  626 605 
1 3  260 227 
14  477 467 
1 5  259 268 
1 6  350 370 
1 7  45 1 443 

Flow Meter, an instrument with a cruder scale. Table 1 5 . 3  shows the terminal 
digits of the readings in Tables 1 5  . 1  and 1 5  .2 .  Clearly 0, 2, 5, 7 and 8 are pre
ferred in Table 1 5  .2 ,  a trend just discernable in Table 1 5  . 1  also, where these 
make up 20 of the 34 rather than the 17 expected . This is despite the measurer, 
myself, being fully aware of the possibility of digit preference. Table 1 5 . 3  
also shows the last digits o f  the 5 7  FEV l measurements i n  Table 4 . 5 .  These 
were each measured by a different student, and the vast excess of zeros is due 
in part to some recording the answer to only one decimal place. Even so, the 
lack of 'ones' is clear. 

Table 15.3 .  Terminal digits of three 
sets of observations 

Table 1 5 . 1  Table 1 5 . 2  Table 4.5 

0000 000000000000 0000000000000 
0000000000000 

1 1 1 1  I 
2222 2222 22 
3333 3 33 
44 44 444444 
5555 55555 5555 
666 6 666 
77777 777 7777 
888 8888 888888 
9 9 999 
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Does digit preference matter? It does if differences in the lase digit are of 
importance to the outcome, as it might be in Table 1 5 . 1 ,  where we are dealing 
with the difference between two similar numbers . Because of this it is a mis
take to have one measurer take readings under one set of conditions and a 
second under another, as their degree of digit preference may differ. It is also 
important to agree the number of figures to be recorded and to ensure that 
instruments have sufficiently fine scales for the job in hand. The last digit in 
Table 1 5 .2  is almost meaningless, for example. Of course, for clinical pur
poses and in view of the measurement error, this does not matter. 

15.3 .  Comparing two methods of measurement 

In clinical measurement, most of the things we want to measure - hearts, 
lungs, livers and so on - are deep within living bodies and out of reach . This 
means that many of the methods we use to measure them are indirect and we 
cannot be sure how closely they are related to what we really want to know . 
When we develop a new method of measurement, rather than compare its 
outcome to a set of known values we must often compare it to another 
method just as indirect. This is a common type of study, and one which is 
often badly done (Bland and Altman 1 986). 

Tables 15 . 1  and 1 5  . 2  show measurements of PEFR by two different 

Table 15.4. Comparison of two methods of 
measuring PEFR 

Subject PEFR (litre/min) 
number Wright meter Mini-meter Difference 

I 494 5 1 2  - 1 8 
2 395 430 - 35 
3 5 1 6  520 - 4  
4 434 428 6 
5 476 500 - 24 
6 557 600 - 43 
7 4 1 3  364 49 
8 442 380 62 
9 650 658 - 8  

I O  433 445 - 1 2 
1 1  4 1 7  432 - 1 5 
1 2  656 626 30 
1 3  267 260 7 
1 4  478 477 I 
1 5  178  259 - 8 1  
1 6  423 350 73 
1 7  427 45 1 - 24 

Total - 36 
Mean 2 . 1  
Standard deviation 38 .8 
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methods . For simplicity, we shall use only one measurement by each method 
in the following (Table 1 5 .4). We could make use of all the data by using the 
average for each method, but this introduces an extra stage in the calculation.  
Bland and Altman ( 1 986) give details .  
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Fig. 15.2 PEFR measured by two different instruments. 

The first step in the analysis is to plot the data on a scatter diagram 
(Fig . 1 5 .2) . If we draw the line of equality, along which the two measure
ments would be exactly equal, this gives us an idea of the extent to which the 
two methods compared . This is not the best way of looking at data of this 
type, because much of the graph is empty space and the interesting informa
tion is clustered along the line. A better approach is to plot the difference 
between the methods against the sum or average. This time the sign of the dif
ference is important, as there is a possibility that one method may give higher 
values than the other and this may be related to the true value we are trying to 
measure. This plot is shown in Fig. 1 5  . 3 ,  together with a histogram of the dif
ferences . There is no clear evidence of a relationship between difference and 
mean, and we can check this by a test of significance using the correlation 
coefficient . We get r = 0. 19 ,  p = 0 .5 .  There is little evidence of overall bias, 
the mean difference being close to zero . We can find a confidence interval for 
the mean difference as described in Section 10 .2 .  The differences have a mean 
of - 2. 1  l itre/min, and a standard deviation of 38 .87 .  The standard error of 
the mean is thus s/-J n = 38 .8/-J 17  = 9.41 litre/min and the corresponding 
value of t with 16 degrees of freedom is 2 . 1 2 . The 95 per cent confidence 
interval for the bias is thus - 2 . 1  ± 2 . 1 2  x 9.41 = - 22 to + 1 8  l i tre/min. 
Thus on the basis of these data we could have a bias of as much as 22 
litre/min, which could be clinically important. The original comparison of 
these instruments used a much larger sample and found that any bias was very 
small (Oldham et al. 1 979) . 
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Fig. 15.3 Difference versus mean for PEFR measured by two different 
instruments. 

The standard deviation of the differences between measurements made by 
the two methods provides a good index of the comparability of the methods. 
If we can estimate the mean and standard deviation reliably, with small 
standard errors , we can then say that the difference between methods will be 
at most two standard deviations on either side of the mean except with a small 
probability . We can check how closely the differences follow a Normal Dis
tribution from their histogram. 

The standard deviation of the differences is estimated to be 38 .8  litre/min 
and the mean is - 2 litre/min. Two standard deviations is therefore 78 
litre/min. The reading with the mini-meter is expected to be 80 litres below to 
76 litres above for most subjects .  Certainly on the basis of these data we 
would not conclude that the two methods are comparable or chat the mini-
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meter could reliably replace the Wright peak flow meter . As remarked in Sec
tion 10 .2 ,  this meter had received considerable wear . 

15.4.  Sensitivity and specificity 

One of the main purposes of making clinical measurements is to aid in 
diagnosis . This may be to identify one of several possible diagnoses in a 
patient, or to find people with a particular disease in an apparently healthy 
population . The latter is known as screening. In either case the measurement 
provides us with a test which we may be able to compare later with a true 
diagnosis . The test may be based on a continuous variable and the disease 
indicated if it is above or below a given level, or it may be a qualitative 
observation such as carcinoma in-situ cells on a cervical smear. In either case 
we shall call the test positive if it indicates the disease and negative if not , and 
the diagnosis positive if the disease is later confirmed, negative if not . 

How do we measure the effectiveness of the test? Table 1 5 . 5 shows three 
artificial sets of test and diagnosis data. We collld take as an index of test 

Table 15.5.  Some artificial test and diagnosis data 

True diagnosis 

Test I Positive Negative Total 

positive 4 5 9 
negative I 90 9 1  

Total 5 95 J OO 

True diagnosis 

Test 2 Positive Negative Total 

positive 0 0 0 
negative 5 95 J OO 

Total 5 95 J OO 

True diagnosis 

Test 3 Positive Negative Total 

positive 2 0 2 
negative 3 95 98 

Total 5 95 J OO 
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effectiveness the proportion giving the true diagnosis from the test. For Test 1 
in the example it is 94 per cent . Now consider Test 2, which always gives a 
negative result. Test 2 will never detect any cases of the disease. We are now 
right for 95 per cent of the subjects ! However, the first test is useful ,  in that it 
detects some cases of the disease, and the second is not, so this is clearly a 
poor index. We could use a coefficient of agreement , for example the number 
positive on both tests over the number positive on at least one test . For Test 1 
this is 4/(4 + 5 + 1 )  = 0.4; for Test 2 it is 0/(0 + 0 + 5) = 0. This is better, but 
still not good enough. Compare Test 3, which has the same coefficient of 
agreement as Test 1 ,  2/(2 + 0 + 3) = 0.4. However, Test 3 is not as good as 
Test 1 in one respect: it only detects 2 of the 5 true positives, compared to 4 .  
On the other hand, it is a better test in another way: i t  does not diagnose as 
positive any true negatives . 

There is no one simple index which enables us to compare different tests in 
all the ways we would l ike. This is because there are two things we need to 
measure. One is how good the test is at finding true positives i .e .  those with 
the condition . The other is how good the test is at excluding true negatives, 
i . e .  those who do not have the condition . The indices conventionally 
employed to do this are: 

. . . true + ve who are also test + ve 
sens1t1v1ty = ------------

all true + ve 
true - ve who are also test - ve 

specificity = ------------
all true - ve 

In other words, the sensitivity is a proportion of true positives who are test 
positive, and the specificity is the proportion of true negatives who are test 
negatives . For our three tests these are: 

Sensitivity 
Test 1 0.80 
Test 2 0.00 
Test 3 0.40 

Specificity 
0.95 
1 .00 
1 .00 

Test 2, of course, misses all the true positives and finds all the true negatives, 
by saying all are negative. The difference between Tests 1 and 3 is brought out 
by the greater sensitivity of 1 and the greater specificity of 3. We are compar
ing tests in two dimensions. We can see that Test 3 is better than Test 2, 
because its sensitivity is higher and its specificity is the same. However, it is 
more difficult to see whether Test 3 is better than Test 1 .  We must come to a 
judgement based on the relative importance of sensitivity and specificity in 
the particular case . 
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When the test is based on a continuous variable, we can alter the sensitivity 
and specificity by changing the cut-off point. If high values indicate the dis
ease, raising the cut-off point will mean fewer cases will be detected and so the 
sensitivity will be decreased. However, there will be fewer false positives, 
positives on test but in fact not diseased, and the specificity will be increased . 
On the other hand, i f  we lower the cut-off point we shall detect more cases 
and the sensitivity will be increased, but we shall have more false positives 
and the specificity will be decreased. 

For a practical example, Maxwell et al. ( 1 983) observed that a remarkable 
number of alcoholics had evidence at X-ray of past rib fractures. We asked 
whether this would be of any value in the detection of alcoholism in patients . 
Among 7 4 patients with alcoholic liver disease, 20 had evidence of at least one 
past fracture on chest X-ray and 1 1  had evidence of bilateral or multiple frac
tures . In a control group of 1 8 1  patients with non-alcoholic liver disease or 
gastrointestinal disorders, 6 had evidence of at least one fracture and 2 of 
bilateral or multiple fractures. 

For any fractures as a test for alcoholism, the sensitivity was 20/74 = 0.27 ,  
and the specificity ( 1 8 1  - 6)/ 1 8 1  = 0.97 .  For bilateral or multiple fractures 
the sensitivity was l l /74 = 0. 1 5 and the specificity was ( 1 8 1 - 2)/ 1 8 1 = 0.99. 
Hence both tests were very specific; very few non-alcoholics would be 
indicated as alcoholics by them. On the other hand, neither was very sensi
tive; many alcoholics would be missed . As might be expected, the more 
stringent test of bilateral or multiple fractures was more specific and less 
sensitive than the test of any fracture. 

Sensitivity and specificity are often multiplied by 100 to give percentages. 
They are both binomial proportions, so their standard errors and confidence 
intervals are found as described in Section 8 .4 and the sample size required 
for their reliable estimation can be calculated as described in Section 8 . 8 .  

1 5 . 5 .  Normal or reference ranges 

In Section 1 5 .4 we were concerned with the diagnosis of particular diseases . 
In this section we look at it the other way round and ask within what range of 
values measurements on normal , healthy people wil l  l ie .  We should then be 
able to say that measurements outside this range are indicative of disease. 

There are great difficulties in doing this . Who is ' normal ' anyway? In the 
UK population almost everyone has hard fatty deposits in their coronary 
arteries, which result in death for about half of them . Very few Africans have 
this ; they die from other causes. So it is normal in the UK to have an 
abnormality. We can set this problem aside and say that normal people are 
the apparently healthy members of the local population. We can draw a 
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sample of these as described in Chapter 3 and make the measurement on 
them. 

The next problem is to calculate the range. If  we use the range as defined in 
Section 4 .  7, the difference between the two most extreme values , we can be 
fairly confident that if we carry on sampling we will eventually find observa
tions outside it, and the range will get bigger and bigger. To avoid this we use 
a range between two quantiles (Section 4. 7), usually the 2.5 percentile and the 
97 .5 percentile . This leaves 5 per cent of normals outside the 'normal range' .  
Thus the normal range or reference range is the set o f  values within which 95 
per cent of  measurements from apparently healthy individuals will lie. 

A third difficulty comes from confusion between 'normal ' as used in 
Medicine and ' Normal Distribution' as used in Statistics.  This had led some 
people to develop approaches which say that all data which do not fit under a 
Normal curve are abnormal ! Such conclusions are simply absurd; there is no 
reason to suppose that all variables are Normally distributed (Sections 7 .2 ,  
7.4, 7 . 5 ) .  The term 'reference range' ,  which i s  becoming widely used, has the 
advantage of avoiding this confusion. However, the most commonly used 
method of calculation rests on the assumption that the variable is, in fact , 
Normally distributed. 

We have already seen that in general most observations fall within two 
standard deviations of the mean, and that for a Normal Distribution 95 per 
cent are within these limits with 2 .5  per cent below and 2 .5  per cent above . If  
we estimate the mean and standard deviation of data from a Normal popula
tion we can estimate the reference range as (.X - 2s) to (x + 2s). 

Consider the FEY 1 data of Table 4. 5 .  We shall estimate the reference range 
for FEV l in male medical students. We have 57 observations, mean 4.06 and 
standard deviation 0.67 litres . The reference range is thus 2. 7 to 5 .4 litres . 
Frqm Table 4 .4  we see that in fact only one student, 2 per cent , is outside these 
limits although the sample is rather small. 

Standard errors and confidence intervals for these limits are easy to find,  
provided the observations are from a Normal Distribution.  The estimates x 
and s are independent with standard errors -J(s2/n) and '[s2/2(n - 1 )] 
(Sections 8 .2 ,  8 .  7) .  The value of x follows a Normal Distribution and s a dis
tribution which is approximately Normal. Hence (x - 2s) is from a Normal 
Distribution with variance: 

Var (x - 2s) = Var (x) + Var (2s) = Var (.X) + 4 Var (s) 
s2 s2 ( 1 2 ) = 
---;;-

+ 4 
x 2(n - 1 )  = s2 

---;;- + � 
Hence, provided Normal assumptions hold, the standard error of the limit of 
the reference range is �s2 (-1 + _2 ) 

n n - 1  
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I f  n is large , this is approximately 

JEJ-
For the FEY ! data, this is .J(3 x 0.672/57) = 0. 1 5 .  Hence the 95 per cent 

confidence intervals for these limits are 2. 7 ± I .  96 x 0. 1 5  and 
5 .4 ± 1 .96 x 0. 1 5  i .e .  from 2.4 to 3 .0 and 5 . 1  to 5 . 7  litres . These confidence 
intervals seem quite wide to me, yet reference ranges based on much smaller 
samples are often reported in the literature without any estimates of their 
precision . 

Compare the triglyceride levels of Fig. 4. 1 3 .  Here the data are highly 
skewed, and the Normal model does not fit .  The lower limit is 0 .07 ,  well 
below any of the observations, and the upper limit is 0.94, greater than which 
are 5 per cent of the observations. It is possible for such data to give a negative 
lower limit ! 

The triglyceride values are highly skewed to the right, which suggests that a 
logarithmic transformation would help Normalize the data (Fig. 7 . 1 6) .  
Figure 7 . 1 7 shows the logw-transformed data, which give a breathtakin.gly 
symmetrical distribution (x = - 0.33 1 ,  s = 0 . 1 7 1 ) .  The lower limit in the 
transformed data is - 0.67, corresponding to a triglyceride level of 0.2 1 ,  
below which are 2 . 1 per cent of observations. The upper limit is 0 .0 1 ,  cor
responding to 1 .02, above which are 2 .5  per cent of observations. The fit to 
the log-transformed data is excellent. For the standard error of the reference 
l imit we have .J(3 x 0. 1 7 l 2/282) = 0.0176. The 95 per cent confidence 
intervals are thus - 0.673 ± 2 x 0.0176 and 0.01 1 ± 2 x 0.0176 ,  i . e .  - 0. 707 
to - 0.637 and - 0.025 to 0 .046. In the untransformed data this gives 0. 1 96 to 
0.23 1 and 0 .945 to 1 . 1 12 ,  found by taking the antilogs . These confidence 
limits can be transformed back to the original scale, unlike those in Section 
10.4, because no subtraction of means has taken place. 

Because of the obviously unsatisfactory nature of the Normal model for 
some data, some authors have advocated the estimation of the percentiles 
directly as in Section 4 .5 ,  without any distributional assumptions. This is an 
attractive idea. We want to know the point below which 2 .5  per cent of values 
will fal l .  Let us simply rank the observations and find the point below which 
2 .5  per cent of the observations fall .  For the 282 triglicerides , the 2 . 5  and 97 . 5  
percentiles are found a s  follows . For the 2 . 5  percentile, we find i = q (n + I )  = 0.025 x (282 + I )  = 7 .08 . The required quantile will b e  between the 7th 
and 8th observation.  The 7th is 0.21 , the 8th is 0.22 so the 2.5 percentile 
would be estimated by 0.21  + (0 .22 - 0.2 1 )  x (7 .08 - 7) = 0 .2 1 1 . Similarly 
the 97 . 5  percentile is 1 .049. 

This approach gives an unbiased estimate whatever the distribution . The 
log-transformed triglyceride would give exactly the same results .  Note that 
the Normal theory limits from the log-transformed data are very similar. We 
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now look at the confidence interval. The 95 per cent confidence interval for 
the q quantile, here q being 0.025 or 0.975, estimated directly from the data, 
is  found by an application of the Binomial Distribution (Sections 6 .4 ,  6 .6) 
(see Conover 1 980) . (The number of observations less than the q quantile will 
be an observation from a Binomial Distribution with parameters n and q . )  

j = nq - 1 .96 -Jnq( l  - q )  
k = nq + 1 .96 -Jnq(l - q) 

We round j and k up to the next integer. Then the 95 per cent confidence 
interval is  between the jth and the kth observations in the ordered data.  For 
the triglyceride, n = 282 and so for the lower limit, q = 0.025, we have 

J = 282 x 0.025 - 1 .96 -J282 x 0.025 x o . 975 
k = 282 x 0.025 + 1 .96 -J282 x 0.025 x o.975 

This gives j = 1 .9 and k = 1 2.2,  which we round up to j = 2 and k = 1 3 .  I n  
the triglyceride data the second observation, corresponding t o  j = 2,  i s  0. 1 9  
and the 1 3th is 0 .26 .  Thus the 95 per cent confidence interval for the lower 
reference limit is  0. 1 9  to 0.26. The corresponding calculation for q = 0. 975 
gives} = 270 and k = 28 1 . The 270th observation is 0 .98 and the 28 1 st is 1 .62, 
giving a 95 per cent confidence interval for the upper reference limit of 0 .  98 to 
1 .62. These are wider confidence intervals than those found by the Normal 
method, those for the long tail particularly so. This suggests that this method 
of estimating percentiles in long tails is imprecise. 

1 5.6. Survival data 

Survival data arise in many ways in medical research . The most obvious is in 
studying the length of time patients Ii ve after a treatment or after the onset of  
a disease. We are concerned with the length of time elapsed between entry 
(start of disease, start of treatment, randomization in a trial) and exit from 
the population (death) . There are other processes which have the same char
acteristic. For example, in the chemotherapy of gall stones, we can observe 
via ultra-sound the length of time between the start of treatment and the dis
appearance of the stone . In the study of infertility we can observe the length 
of time between treatment and conception. In this section we shall talk about 
times from entry to death, but other applications should be obvious . 

Problems arise in the measurement of survival because often we do not 
know the exact survival times of all cases. This is because some will still be 
surviving when we want to analyse the data. When cases have entered the 
study at different times, some of the recent entrants may be surviving, but 
only have been observed for a short time. Their survival time may be less than 
those cases admitted early in the study and who have since died. The method 
of calculating survival curves described below takes this into account .  W hen 
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Table 15.6. Survival time in years of patients after diagnosis of parathyroid 
cancer 

Alive Deaths 

less than I less than I 
less than I 2 

I 6 
I 6 
4 7 
5 9 
6 9 
8 I I  

1 0  1 4  
J O  
1 7  

we know some o f  the observations exactly, and only that others are greater 
than some value, we say that the data are censored. We overcome this dif
ficulty by the construction of a life table . 

Table 1 5 .  6 shows some typical survival data, for patients with parathyroid 
cancer. The survival times are recorded in completed years. A patient who 
survived for 6 years and then died can be taken as having lived for 6 years and 
then died in the seventh.  In the first year from diagnosis, one patient died . 
Three patients were observed for only part of this year and 1 7  survived into 
the next year. The 2 who have only been observed for part of the year are said 
to be withdrawn from follow-up. There is no information about their sur
vival after the first year, because it has not happened yet. These patients are 
only at risk of dying for part of the year and we cannot say that 1 out of 20 
died as they may yet contribute another death in the first year. We can say 
that such patients will contribute half a year of risk, on average, so the 
number of patient years at risk in the first year is 1 8  ( 1 7  who survived and 1 
who died) plus 2 halves for those withdrawn from follow-up, giving 1 9  
altogether. We get an estimate o f  the probability o f  dying i n  the first year of 
1 / 1 9, and an estimated probability of surviving of 1 - 1 1 1 9 . We can do this 
for each year until the limits of the data are reached. We thus trace the sur
vival of these patients estimating the probability of death or survival at each 
year and the cumulative probability of survival to each year. This set of prob
abilities is called a life table. 

To carry out the calculation, we first set out for each year the number alive 
at the start, the number withdrawn during the year and the number at risk and 
the number dying (Table 1 1 .  7). Thus in year 1 the number at the start is 20, 
the number withdrawn is 2, the number at risk 1 9  and the number of deaths is 
1 .  As there were 2 withdrawals and 1 death the number at the start of year 2 is 
1 7 .  For each year we calculate the probability of dying in that year for 
patients who have reached the beginning of it, and hence the probability of 
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Table 15.7. Life table calculation for parathyroid cancer survival 

Cumulative 
Number Withdrawn Prob. of Prob. of 
at  during Prob. of surviving surviving 

Year start year At risk I Deaths death year x x years 
x nx wx rx = nx - IWx dx qx = dx/rx Px = I - qx px = PxPx- 1 

20 2 1 9  I 0.0526 0 .9474 0.9474 

2 1 7  2 1 6  0 0 I 0 .9474 

3 1 5  0 1 5  I 0.0667 0.9333 0 .8842 Q 
4 1 4  0 1 4  0 0 I 0. 8842 5· 
5 1 4  I 1 3± 0 0 I 0.8842 

c=;· 
e. 

6 1 3  I 1 2± 0 0 I 0.8842 9 
1 1± 

(1) 
7 1 2  I 2 0 . 1 739 0.826 1  0 .7304 Q Vl 
8 9 0 9 I 0. 1 1 1 1  0. 8889 0.6493 i::: .., 

1± (1) 
9 8 I 0 0 I 0.6493 9 

0 7 2 0.2857 0.7 1 43 0.4638 
(1) 

1 0  7 :::i .... 
I I  5 2 4 0 0 I 0.4638 

1 2  3 0 3 I 0.3333 0 .6667 0.3092 

1 3  2 0 2 0 0 I 0.3092 

1 4  2 0 2 0 0 I 0.3092 

1 5  2 0 2 I 0.5 0.5 0 . 1 546 

1 6  l 0 I 0 0 I 0. 1 546 

1 7  I 0 I 0 0 I 0 . 1 546 

1 8  I I I 
I 0 0 I 0. 1 546 
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Fig. 15.4 Survival curve for parathyroid cancer patients. 

surviving to the next year. Finally we calculate the cumulative survival prob
ability. For the first year, this is the probability of surviving that year, 
P1 = p1 •  For the second year, it is the probability of surviving up to the start 
of the second year, P1 , times the probability of surviving that year, p2, to give 
P2 = p2P1 • The probability of surviving for 3 years is similarly P3 = p3P2, and 
so on. From this life table we can estimate the five-year survival rate, a useful 
measure of prognosis in cancer. For the parathyroid cancer, the five-year sur
vival rate 0. 8842, or 88 per cent. We can see that the prognosis for this cancer 
is quite good.  

We can draw a graph of the cumulative survival probability, the survival 
curve. This is usually drawn in steps, with abrupt changes in probability 
(Fig. 5 .4) .  This convention emphasizes the relatively poor estimation at the 
long survival end of the curve, where the small numbers at risk produced 
large steps.  

The standard error for the survival probabilities can be found 
(see Armitage 1 973) and two survival curves can be compared by several 
significance tests, of which the best known is the logrank test (Peto et al. 
1 977) . 

15.  7 .  Computer-aided diagnosis 

Reference ranges (Section 1 5 .5) are one area where statistical methods are 
involved directly in diagnosis ,  computer-aided diagnosis is another. Com
puters are machines which can store large amounts of information and pro
cess them very quickly. In statistics they are very widely used to store data, 
calculate, draw graphs , etc . They are used in many other areas of medicine, 
from medical records to patient interviews , but none cause so much argument 
as those used in computer-aided diagnosis. The 'aided' is put in to persuade 
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clinicians that the main purpose is not to do them out of a job,  but, naturally, 
they have their doubts . 

This is not a book about medical computing (see Kember 1 982; Norris et al. 
1 985), but computer-aided diagnosis is partly a statistical exercise .  In fact , 
there are two types of computer-aided diagnosis: statistical methods, where 
diagnosis is based on a set of data obtained from past cases; and decision-tree 
methods, which try to imitate the thought processes of an expert in the field.  
We shall look briefly at each approach. 

There are several methods of statistical computer aided diagnosis .  One 
uses discriminant analysis. In this we start with a set of data on subjects 
whose diagnosis was subsequently confirmed, and calculate one or more dis
criminant functions. A discriminant function has the form : 

constant1 x variable1 + constant2 x variable2 + . . .  + constantn x variablen 

The constants are calculated so that the values of the functions are as similar 
as possible for members of the same group and as different as possible for 
members of different groups. In the case of only two groups, we have one dis
criminant function and all the subjects in one group will have high values of 
the function and all subjects in the other will have low values . For each new 
subject we evaluate the discriminant function and use it to allocate the subject 
to a group or diagnosis .  We can say what the probability is of the subject fall
ing in that group, and in any other. We have already come across an example 
of this technique in Exercise 2E. Many forms of discriminant analysis have 
been developed to try and improve this form of computer diagnosis, but it 
does not seem to make much difference which is used . 

A different approach is Bayesian analysis. This is based on Bayes ' 
Theorem, a result about probability which may be stated in terms of the prob
ability of diagnosis A having observed data B, as : 

. . " f  d Prob (data B if diag A) x Prob (diag A) Prob (diagnos1s A 1 ata B) = Prob (data B) 

If  we have a large data set of known diagnoses and their associated symptoms 
and signs, we can determine the Prob (diagnosis A) easily. It is  simply the 
proportion of times A has been diagnosed. The problem of finding the prob
ability of a particular combination of symptoms and signs is more difficult .  If 
they are all independent, we can say that the probability of a given symptom 
is  the proportion of times it occurs, and the probability of the symptom for 
each diagnosis is  found in the same way. The probability of any combination 
of symptoms can be found by multiplying their individual probabilities 
together, as described in Section 6.2 .  In practice the assumption that signs 
and symptoms are independent is most unlikely to be met and a more com
plicated analysis would be required to deal with this. However, some systems 
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of computer-aided diagnosis have been found to work quite well with the 
simple approach.  

Expert or knowledge-based systems work in a different way. Here the 
knowledge of a human expert or group of experts in the field is converted into 
a series of decision rules , e .g .  'if the patient has post-bilateral rib fractures 
then the patient is an alcoholic, if not then on to the next decision ' .  These 
systems can be modified by asking further experts to test the system with 
cases from their own experience and to suggest further decision rules if  the 
program fails . They also have the advantage that the program can 'explain '  
the reason for its 'decision' by  listing the series of steps which led to  it .  

Most of Chapter 1 4  consists of rules of just this type and could be turned 
into an expert system for statistical analysis .  Indeed some of my colleagues 
are already discussing the possibility of an expert system for medical 
statistics . 

Although there have been some impressive achievements in the field of 
computer-aided diagnosis,  it has to date .made little progress towards 
acceptance in routine medical practice. As computers become more familiar 
to clinicians, more common in their surgeries and more powerful in terms of 
data storage and processing speed, we may expect computer-aided diagnosis 
to become as well established as computer-aided statistical analysis is today. 

Appendix 15A 

Standard deviation for measurement error 

The standard deviation for the error in repeated measurements is found as 
follows . We want to find the variance within subjects, as we found the 
variance within groups for the two-sample t test (Section 1 0.3) .  The sum of 
squares for one subject is [ 2x; _ �i + y;) r + [ 2y; _ �i + y;) r 

= i (x; - y;)2 + i (y; - x;)2 
= t Cx; - y;)2 

since (x; - y;)2 = (Y; - x;)2 

This sum of squares has 2 - 1 = 1 degree of freedom .  We add n of these 
together to get 
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and this has n degrees of freedom so we divide by n to get the estimate of 
variance. The square root gives us the standard deviation. 

Exercise 1 5M 

(Each branch is either true or false.) 

1 .  The specificity o f  a test for a disease: 

(a) has a standard error derived from the Binomial Distribution; 
(b) measures how well the test detects cases of the disease; 
(c) measures how well the test excludes subjects without the disease; 
(d) measures how often a correct diagnosis is obtained from the test; 
(e) is all we need to tell us how good the test is . 

2 .  The repeatability o r  precision o f  measurements may itself b e  measured 

by: 

(a) the coefficient of variation of repeated measurements; 
(b) the correlation coefficient between pairs of measurements; 
(c) the standard deviation of the difference between pairs of measurements; 
(d) the standard deviation of repeated measurements;  
(e) the difference between the means of two sets of measurements on the 

same set of subjects. 

3 .  If the normal or reference range for haematocrit in men is 43 .2-49.2:  

(a) any man with haematocrit outside these limits is abnormal; 
(b) haematocrits outside these limits are proof of disease; 
(c) a man with a haematocrit of 46 must be very healthy; 
(d) a woman with a haematocrit of 48 has a haematocrit within normal 

limits; 
(e) a man with a haematocrit of 42 may be i l l .  

4. When a survival curve is calculated from censored survival times: 

(a) the estimated proportion surviving becomes less reliable as survival time 
increases ; 

(b) individuals withdrawn during the first time interval are excluded from 
the analysis ; 
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(c) survival estimates depend on the assumption that survival rates remain 
constant over the study period; 

(d) it may be that the survival curve will not reach zero survival; 
(e) the five-year survival rate can be calculated even if many of the subjects 

were identified Jess than five years ago . 

5.  Terminal digits in measurements which are likely to occur more often 

than expected include: 

(a) O; 

(b) 1 . 
' 

(c) 2 ·  ' 

(d) 5 ·  ' 

(e) 9 .  

Exercise 1 5E 

In this exercise we shall estimate a reference range. Mather et al. ( 1 979) mea
sured plasma magnesium in 1 40 apparently healthy people, to compare with a 
sample of diabetics. The normal sample was chosen from blood donors and 
people attending day centres for the elderly in the area of St George's  
Hospital , to give 10 male and 1 0 female subjects in each age decade from 
1 5-24 to 75 years and over. Questionnaires were used to exclude any subject 
with persistent diarrhoea, excessive alcohol intake or who were on regular 

:J1 20 u 
� 

60 70 80 90 
M a y n e s i u m 

100 

Fig. 15.E.1 Distribution of plasma magnesium in 140 apparently healthy people. 
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drug therapy other than hypnotics and mild analgesics in the elderly. The dis
tribution of plasma magnesium is shown in Fig. l 5E. 1 .  The mean was 
0. 8 1 0  mmol/litre and the standard deviation 0.057 mmol/litre. 

I .  What do you think of the sampling method? Why use blood donors and 
elderly people attending day centres? 

2. Why were some potential subjects excluded? Was this a good idea? 
Why were certain drugs allowed for the elderly? 

3 .  Does plasma magnesium appear to follow a Normal Distribution? 
4. What is the reference range for plasma magnesium, using the Normal 

Distribution method? 
5 .  Find confidence intervals for the reference limits .  
6.  Would it matter if  mean plasma magnesium in normal people increased 

with age? What method might be used to improve the estimate of the refer
ence range in this case? 



16.  Mortality statistics and 
the structure of human 
populations 

16. 1 .  Mortality rates 

One of our principal sources of information about the changing pattern of 
disease within a country and the differences in disease between countries is  
mortality statistics . In most developed countries, any death must be certified 
by a doctor, who records the cause, date and place of death and some data 
about the deceased . In Britain, these include the date of birth , area of 
residence and last known occupation . These death certificates form the raw 
material from which mortality statistics are compiled by a national bureau of 
censuses, in Britain the Office of Population Censuses and Surveys. The 
numbers of deaths can be tabulated by cause, by sex, by age, by types of 
occupation, by area of residence and by marital status. Table 5 . 1  shows one 
such tabulation, of deaths by cause and sex. 

For purposes of comparison we must relate the number of deaths to the 
number in the population in which they occur. We have this information 
fairly reliably at ten-year intervals , from the decennial census of the country. 
We can estimate the size and age and sex structure of the population between 
censuses from registration of births and deaths .  Each birth or death which 
takes place is notified to an official registrar, and so we can keep some track 
of changes in the population . There are other, less well-documented changes 
taking place, such as immigration and emigration, which mean that popula
tion size estimates between the census years are only approximations. Some 
estimates , such as the numbers in different occupations, are so unreliable that 
mortality data are only tabulated by them for census years. 

If we take the number of deaths over a given period of time and divide it by 
the number in the population and the time period, .we get a mortality rate, the 
number of deaths per unit time per person. We usually take the number of 
deaths over one calendar year, although when the number of deaths is small 
we may take deaths over several years, to increase the precision of the 
numerator. The number in the population is changing continually, and we 
take as the denominator the estimated population at the mid-point of the 
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time period. Mortality rates are usually very small numbers, so we usually 
multiply them by a constant, such as 1 000 or 1 00 000, to avoid strings of  zeros 
after the decimal point . 

When we are dealing with deaths in the whole population, irrespective of  
age, the rate we obtain is called the crude mortality rate or crude death rate. 
The terms 'death rate' and 'mortality rate' are used interchangeably. We cal
culate the crude mortality rate for a population as: 

deaths occurring over given period 
x 1 000 number in population at mid-point 

of period x length of period 
If the period is in years, this gives the crude mortality rate as deaths per 1 000 
population per year. 

The crude mortality rate is so called because no allowance is  made for the 
age distribution of the population, or for comparisons between populations 
with different age structures. For example, in 1 90 1  the crude mortality rate 
among adult males (aged over 1 5  years) in England and Wales was 1 5 .7  per 
I 000 per year, and in 1 97 1  it was 1 5 .  5 per I 000 per year. It seems strange that 
with all the improvements in medicine, housing and nutrition between these 
times there has been so little improvement in the crude mortality rate. To see 
why we must look at the age-specific mortality rates, the mortality rates 
within narrow age groups.  Age-specific mortality rates are usually calculated 
for one-, five-, or ten-year age groups . In 1 901 the age-specific mortality rate 
for men aged 1 5- 1 9  was 3 . 5  deaths per 1 000 per year, whereas in 1 97 1  it was 
only 0.9 .  As Table 1 6 . 1 shows, the age-specific mortality rate in 1 90 1  was 
greater than that in 1 97 1  for every age group. However, in 1 90 1  there was a 
much greater proportion of the population in the younger age groups, where 

Table 16.1.  Age-specific mortality rates 
and age distribution in adult males, 
England and Wales, 1 901 and 1971  

Age-speci fie % adult 
death rate population in 
1 000 per year age group 

Age group 
(years) 1 90 1  1 97 1  1 90 1  1 97 1  

1 5 - 1 9  3 . 5  0.90 1 5 .36 9 .6 1  
20-24 4.7 0.95 1 4 .07 1 0 .62 
25-34 6.2 0.99 23.76 1 7 .45 
35-44 1 0 .6 2.32 1 8 .46 16 . 1 6  
45-54 1 8 .0 7.09 1 3 . 34 1 6 .63 
55-64 33 .5  20.20 8 .68 1 5 .48 
65-74 67.8 50.80 4.57 9 .90 
75-84 1 39 .8 1 14.20 1 .58 3 . 52 
85- 276.5  234.60 0. 1 7  0.62 
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mortality was low, than there was in 1 97 1 .  Correspondingly, there was a 
smaller proportion of the 1 90 1  population than the 1 97 1  population in the 
higher mortality older age groups . Although mortality was lower at any given 
age in 1 97 1 ,  the greater proportion of older people meant that there were as 
many deaths as in 1 90 1 . 

16.2 . Age-standardized mortality rates using the direct 
method 

To eliminate the effects of different age structures in the populations which 
we want to compare, we can look at the age-specific death rates . But if  we are 
comparing several populations, this is rather a cumbersome procedure, and it 
is often more convenient to calculate a single summary figure from the age
specific rates . There are many ways of doing this, of which three are fre
quently used : the direct and indirect methods of age standardization, and the 
life table. 

We shall describe the direct method first. We use a standard population 
structure, i . e .  a standard set of proportions of people in each age group.  We 
then calculate the overall mortality rate which a population with the standard 
age structure would have if  it experienced the age specific mortality rates of 
the observed population, the population whose mortality rate is to be 
adjusted . We shall take the 1 97 1  population as the standard and calculate the 
mortality rate the 1 90 l population would have experienced if it had the 1 97 1  
age distribution. W e  d o  this b y  multiplying each 1 90 1  age specific mortality 
rate by the proportion in that age group in the standard population, and add
ing. This then gives us an average mortality rate for the whole population, the 
age-standardized mortality rate. For example, the 1 90 1  mortality rate in age 

Table 16.2. Calculation of the age-standardized mortality 
rate by the direct method 

Observed mortality Standard proportion 
rate per 1 000 in group 

Age group (a) (b) (a) x (b) 

1 5 - 1 9  3 . 5  0.096 1 0 .336 
20-24 4 .7  0. 1 062 0.499 
25-34 6.2 0 . 1 745 1 .082 
35-44 1 0 .6  0 . 1 6 1 6  l .7 1 3  
45-54 1 8 . 0  0 . 1 663 2 .993 
55-64 3 3 . 5  0. 1 548 5 . 1 86 
65-74 67 . 8  0.0990 6 . 7 1 2  
75-84 1 39 .8  0.0352 4 .921  
85- 276.5  0.0062 l .7 1 4  

Sum 25 . 1 57 
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group 1 5 - 1 9  was 3 . 5  per 1 000 per year and the proportion in the standard 
population in this age group is 9 .6 1  per cent or 0.096 1 .  The contribution of 
this age group is 3 . 5  x 0.096 1 = 0.336.  The calculation is set out in Table 
1 6 .2 .  

If  we used the population' s  own proportions in  each age group in  this cal
culation we would get the crude mortality rate. Since 1 97 1  has been chosen as 
the standard population, its crude mortality rate of 1 5 . 5  is also the age
standardized mortality rate . The age-standardized mortality rate for 1 90 1  
was 25.2 per 1 000 men per year. We can see that there was a much higher age
standardized mortality in 1 90 1  than 1 97 1 ,  reflecting the difference in age 
specific mortality rates. 

16.3.  Standardized mortality ratios by the indirect method 

The direct method relies upon age-specific mortality rates for the observed 
population.  If we have very few deaths, these age-specific rates will be very 
poorly estimated. This will be particularly so in the younger age groups, 
where we may even have no deaths at all . Such situations arise when consider
ing mortality due to particular conditions or in relatively small groups , such 
as those defined by occupation. The indirect method of standardization is 
used for such data. We calculate the number of deaths we would expect in the 
observe.d' population if it experienced the age-specific mortality rates of a 
standard population. We then compare the expected number of deaths with 
that actually observed . 

We shall take as an example the deaths due to cirrhosis of the liver among 
male qualified medical practitioners recorded around the 1 97 1  census . There 
were 14 deaths among 43 570 doctors aged below 65, a crude mortality rate of 
1 4/43 570 = 32 1  per million, compared to 1 423 out of 1 5  247 980 adult 
males (aged 1 5-64), or 93 per million. The mortality among doctors appears 
high, but the medical population may be older than the population of men as 
a whole, as it will contain relatively few below the age of 25. Also the actual 
number of deaths among doctors is small and any difference not explained by 
the age effect may be due to chance. The indirect method enables us to test 
this . 

Table 1 6 . 3  shows the age-specific mortality rates for cirrhosis of the liver 
among all men aged 1 5-65 , and the number of men estimated in each ten-year 
age group, for all men and for doctors. We can see that the two age distribu
tions do appear to be different . 

The calculation of the expected number of deaths is similar to the direct 
method, but different populations and rates are used. For each age group, we 
take the number in the observed population, and multiply it by the standard 
age-specific mortality rate, which would be the probability of dying if the 
mortality in the observed population were the same as that in the standard 
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Table 16.3.  Age-specific mortality rates due to 
cirrhosis of the liver and age distributions of all men 
and medical practitioners, England and Wales, 1 9 7 1  

Age group Mortality per million Number Number of 
(years) men per year of men doctors 

1 5-24 5 .859 3 584 320 1 080 
25-34 1 3 .050 3 065 1 00 1 2  860 
35-44 46.937 2 876 1 70 1 1  5 1 0 
45-54 1 6 1 .503 2 965 880 10 330 
55-64 27 1 .358 2 756 5 1 0  7790 

population .  This gives us the number we would expect to die in this age group 
in the observed population . We add these over the age groups and obtain the 
expected number of deaths . The calculation is set out in Table 1 6 .4 .  

The expected number of deaths is  4.4965 , which is  considerably less than 
the 14 observed. We usually express the result of the calculation as the ratio of 
observed to expected deaths, called the standardized mortality ratio or SMR. 
Thus the SMR for cirrhosis among doctors is 

1 4  
SMR = = 3 . 1 1 

4 .4965 

We usually multiply by 1 00 to get rid of the decimal point . We say the SMR 
with al l  men = 1 00 i s  3 1 1 .  

If  we do not adj ust for age at all , the ratio of the crude death rates is 3 . 44, 
compared to the age-adjusted figure of 3 . 1 1 ,  so the adj ustment has made 
some, but not much , difference. 

We can calculate a confidence interval for the SMR quite easily. Denote the 
observed deaths by 0 and expected by E. It is reasonable to suppose that the 
deaths are independent of one another and happening randomly in time, so 

Table 16.4. Calculation of the expected number of deaths due 
to cirrhosis of the liver among practitioners, using the indirect 
method 

Standard mortality Observed population: 
rate, all  men Number of doctors 

Age group (a) (b) (a) x (b) 

1 5-24 0.000005859 1 080 0.0063 
25-34 0.0000 1 3050 1 2  860 0 . 1 678 
35-44 0.000046937 1 1  5 1 0  0. 5402 
45-54 0.000 1 6 1 503 IO 330 1 .6683 
55-64 0 .00027 1 358 7790 2 . 1 1 39 

Total 4.4965 
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the observed number of deaths is from a Poisson Distribution (Section 6. 7) .  
The standard deviation of this Poisson Distribution is the square root of its 
mean and so can be estimated by the square root of the observed deaths, -J 0. 
The expected number is calculated from a very much larger sample and is so 
well estimated it can be treated as a constant, so the standard deviation of  
1 00 x O/E, which is the standard error of the SMR, is estimated by 
1 00 x -JOIE. 

Provided the number of deaths is large enough, say more than 1 0 ,  an 
approximate 95 per cent confidence interval is given by 

o -Jo 1 00 x £ ± 1 .  96 x 1 00 x £ 

For small observed frequencies, tables based on the exact probabilities of  
the Poisson Distribution are available (Pearson and Hartley 1 970) . For  the 
cirrhosis data the formula gives 

-J14  -J 1 4  3 1 1 - I .  9 6  x 1 00 x to 3 1 1  + 1 .  96 x 1 00 x ---4 .4965 4.4965 
3 1 1 - 1 63 to 3 1 1  + 1 63 
1 48 to 474 

The confidence interval clearly excludes 1 00 and the high mortality cannot be 
ascribed to chance. 

The news is  not all bad for medical practitioners, however. Their SMR for 
cancer of the trachea, bronchus and lung is only 32. Doctors may drink, but 
they don't smoke! 

16.4. Demographic life tables 

We have already discussed a use of the life table technique for the analysis of 
clinical survival data (Section 1 5 .  6). The life table was found by following the 
survival of a group of subjects from some starting point to death.  In  demo
graphy, which means the study of human populations, life tables are 
generated in a different way. Rather than charting the progress of a group 
from birth to death, we start with the present age-specific mortality rates. We 
then calculate what would happen to a cohort of people from birth if  these 
age-specific mortality rates applied unchanged throughout their lives . We 
denote the probability of dying between ages x and (x + 1) years (which is the 
age-specific mortality rate) by qx. As in Table 1 5 .6 ,  the probability of surviv
ing from age x to (x + 1) is Px = 1 - qx. We now suppose that we have a 
cohort of size 10 at age 0, i .e .  at birth. The size of 10 is usually 1 00 000 or 
1 0  000. The number who would still be alive after x years is Ix· We can see that 
the number alive after (x + 1) years is Ix+ I = p x x Ix• so given all the p x from 
(x = 0) onwards we can calculate the Ix· The cumulative survival probability 
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Table 16.5.  Extract from English Life Table Number 1 1 ,  
1 950-52 ,  males 

Probability an 
individual dies Expected I i  fe 

Age Expected number between ages at age x 
( in years) alive at age x x and x + I (years)' 
x Ix qx ex 

0 1 00 000 0.03266 66.42 
I 96 734 0.00241 67.66 
2 96 501  0 .00 1 4 1  66.82 
3 96 395 0.00 1 02 65 . 9 1  
4 96 267 0.00084 64.98 

1 00 23 0 .44045 1 .67 
I O I  1 3  0.45072 1 .62 
1 02 7 0.460 1 1 1 .58  
1 03 4 0.46864 1 .53 
1 04 2 0.47636 1 .50 

to age x is then PX = I xllo. We have already used this in Exercise 6E. 
Table 1 6 . 5  shows an extract from Life Table Number 1 1 ,  1 950-52, for 

England and Wales . With the exception of 1 94 1 ,  a life table like this has been 
produced every ten years since 1 87 1 ,  based on the decennial census year. The 
life table is based on the census year because only then do we have a good 

Table 16.6. Abridged Life Table 1 969-7 1 ,  England and Wales 

Age Males Females 

x Ix ex Ix ex 
0 1 0  000 68.8 1 0  000 75 . 1  
5 9766 65.4 98 1 9  7 1 .4 

1 0  9746 60. 5  9806 66.5 
1 5  9728 55.6 9795 6 1 .6 
20 9683 50.9 9776 56.7 
25 9638 46. I  9755 5 1 .8 
30 9595 4 1 .3 973 1 47.0 
35 9542 36 .5  9696 42. 1 
40 9467 3 1 .8 9639 37 .4 
45 9327 27.2 9538 32.7 
50 9079 22.9 9372 28 . 3  
55  8673 1 8 .9 9 1 27 24.0 
60 8 0 1 6  1 5 .2  8768 1 9 . 8  
65 7012  12 .0  8227 1 6 .0  
70 5625 9 .4 7403 1 2 . 5  
75 3982 7 .2  6 1 9 1  9.4 
80 2355 5 .5  4544 6 .9  
85 1 072 4.0 2696 5 . 0  
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measure of the number of people at each age, the denominator in the calcula
tion of q x- A three-year period is used to increase the number of deaths for a 
year of age and so improve the estimation of q x· Separate tables are produced 
for males and females because the mortality of the two sexes is  very different . 
Age-specific deaths rates are higher in males than females at every age .  
Between census years life tables are still produced but are only published in an 
abridged form, giving Ix  at  five-year intervals (Table 1 6.6) .  

The final column in Tables 1 6 .5  and 1 6 .6  is  the expected life, expection of 
life or life expectancy, ex - This is the average length of life still to be lived by 
those reaching age x. We have already calculated this as the expected value of 
the probability distribution of year of death (Exercise 6E) .  We can do the cal
culation in a number of other ways . For example, if  we add Ix . 1 ,  lx+ i '  lx + J '  
etc . w e  shall get the total number o f  years to b e  lived, because the Ix+ 1 who 
survive to (x + 1) will have added Ix+ 1 years to the total, the Ix + 2 of these who 
survive from (x + 1) to (x + 2) will add a further I x+ i  years, and s o  on.  If  we 
divide this sum by Ix we get the average number of whole years to be lived . I f  
w e  then remember that people d o  not die only o n  their birthdays, but 
scattered throughout the year, we can add half to allow for the average of half 
a year lived in the year of death. We thus get 

e = -1 L; t + _!_ x 
Ix i -x+ I  1 2 

If many people die in early life, with high age-specific death rates for 
children, this has a great effect on expectation of life at birth.  In 1 97 1 ,  for 
example, expectation of life at birth for males was 69 years, compared to only 
41 years in 1 87 1 ,  an improvement of 28 years. However, expectation of life at 
age 45 in 1 97 1  was 27 years compared to 22 years in 1 87 1 ,  an improvement of 
only 5 years. At age 65, male expectation of life was 1 2  years in 1 97 1  and 1 1  
years in 1 87 1 ,  an even smaller change. Hence the change in life expectancy at 
birth was due to changes in mortality in early life, not late life. 

Life tables have a number of uses , both medical and non-medical.  Expecta
tion of life provides a useful summary of mortality without the need for a 
standard population . The table enables ·us to predict the future size of and age 
structure of a population given its present state; this prediction is called a 
population projection . This can be very useful in predicting such things as the 
future requirement for geriatric beds in a health district . Life tables are also 
invaluable in non-medical applications, such as the calculation of insurance 
premiums, pensions and annuities . 

The main difficulty with prediction from a life table is finding a table which 
applies to the populations under consideration. For the general population 
of, say, a health district, the national life table will usually be adequate, but 
for special populations this may not be the case. If  we want to predict the 
future need for care of an institutionalized population, such as in a long-stay 
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psychiatric hospital or old peoples' home, the mortality may be considerably 
greater than that in the general population. Predictions based on the national 
life table can only be taken as a very rough guide. If possible, l ife tables cal
culated on that type of population should be used . 

16.5.  Vital statistics 

We have seen a number of occasions where ordinary words have been given 
quite different meanings in statistics from those they have in common speech; 
'normal' and 'significant ' are good examples . 'Vital statistics' is the 
opposite, a technical term which has acquired a completely unrelated popular 
meaning . As far as the medical statistician is concerned, vital statistics have 
nothing to do with the dimensions of female bodies . They are the statistics 
relating to life and death:  birth rates , fertility rates , marriage rates and death 
rates . We have already dealt with the crude mortality rate, age-specific 
mortality rates , age-standardized mortality rates, standardized mortality 
ratio, and expectation of life. In this section we shall define a number of other 
statistics which are often quoted in the medical literature. 

The infant mortality rate is the number of deaths under one year of age 
divided by the number of live births, usually expressed as deaths per 1 000 live 
births . The neonatal mortality rate is the same thing for deaths in the first 4 
weeks of life. 

The stillbirth rate is the number of stillbirths divided by the total number of 
births, l ive and still . A stillbirth is a child born dead after 28 weeks'  gestation. 
The perinatal mortality rate is the number of stillbirths and deaths in the first 
week of life divid�d by the total births, again usually presented per 1 000 
births. Infant and perinatal mortality rates are regarded as particularly sensi
tive indicators of the health status of the population. The maternal mortality 
rate is the number of deaths of mothers ascribed to problems of pregnancy 
and birth , divided by the total number of births . 

The attack rate for a disease is the proportion of people exposed to infec
tion who develop the disease . The case fatality rate is the proportion of cases 
who die. The prevalence of a disease is the proportion of people who have it at 
one point in time. The incidence is the number of new cases in one year 
divided by the number at risk .  

The birth rate is the number of live births per year divided by the total 
population. The fertility rate is the number of live births per year divided by 
the number of  women of childbearing age, taken as 1 5 -44 years . 

16.6. The population pyramid 

The age distribution of a population can be presented as histogram, using the 
methods of Section 4. 3 .  However, because the mortality of males and 
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Fig. 16.1 Age distributions for the population of England and Wales, by sex, 
1901 .  

females i s  s o  different the age distributions for males and females are also dif
ferent. It is usual to present the age distributions for the two sexes separately. 
Figure 1 6 . 1 shows the age distributions for the male and female populations 
of England and Wales in 1 90 1 .  Now, these histograms have the same 
horizontal scale. The conventional way to display them is with the age scale 
vertically and the frequency scale horizontally as in Fig. 1 6.2 .  The frequency 
scale has zero in the middle and increases to the right for females and to the 
left for males . This is called a population pyramid, from the shape. 

Figure 1 6 .3 shows the population pyramid for England and Wales in 1 97 1 . 
The shape is quite different. Instead of a triangle we have an irregular figure 
with almost vertical sides which begin to bend very sharply inwards at about 
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age 65 . A major change in population structure has taken place, with a vast 
increase in the proportion of elderly. This has major implications for 
medicine, as the care of the elderly has become a large proportion of the work 
of doctors, nurses and their colleagues .  It is interesting to see how this has 
come about. 

It is popularly supposed that people are now living much longer as a result 
of modern medicine, which prevents deaths in middle life. This is only partly 
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Fig. 16.3 Population pyramid for England and Wales, 1 9 7 1 .  
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Table 16. 7. Life expectancy in 1901 and 
19 7 1 ,  England and Wales 

Expectation 
of l ife in 
years Increase 

Age Sex 1 90 1  1 97 1  1 90 1 to 1 97 1  

Birth M 49 69 20 
F 52 75 23 

15 years M 47 56 9 
F 50 62 1 2  

4 5  years M 23 27 4 
F 26 33 7 

65 years M 1 1  1 2  1 
F 1 2  1 6  5 

true. Table 1 6 .  7 shows the life expectancy"at different ages in 1 90 1  and 1 97 1 .  
Life expectancy at birth has increased dramatically, but the increase i n  later 
life is much less . Thus we can see that the change is not an extension of every 
life by 20 years, which would be seen at every age, but mainly a reduction in  
mortality in childhood and early adulthood. Mortality in later l ife has 
changed by relatively little. 

Now, a big reduction in mortality in childhood would result in an increase 
in the base part of the pyramid, as more children survived, unless there was a 
corresponding fall in the number of babies being born. In the nineteenth cen
tury, women were having many children and despite the high mortality in 
childhood the number who survived into adulthood to have children of their 
own exceeded that of their own parents . The population expanded and this 
history is  embodied in the 1 90 1  population pyramid. In the twentieth century, 
infant mortality fell and people responded to this by having fewer children . 
The base of the pyramid ceased to expand .  As those who were in the base of 
the 1 90 1  pyramid grew older, the population in the top half of the pyramid 
increased. The 0-4 age group in the 1 90 1  pyramid are the 70-74 age group in  
the 1 97 1  pyramid. Had the birth rate not fallen, the population would have 
continued to expand and we would have as great or greater a proportion of 
young people in 1 97 1  as we did in 1 90 1 , and a vastly larger population. Thus 
the increase in the proportion of the elderly is not because adult lives have 
been extended, but because fertility has declined. 

Most developed countries have stable populatiion pyramids like Fig. 1 6 . 3  
and those of most developing countries have expanding pyramids like 
Fig. 1 6 .2 .  



Exercise 16M 

Exercise 1 6M 

(Each branch is either true or false . )  

1 .  Age-specific mortality rate: 

(a) is a ratio of observed to expected deaths; 
(b) can be used to compare mortality between different age groups; 
(c) is an age-adjusted mortality rate; 
(d) measures the number of deaths in a year; 
(e) measures the age structure of the population . 

2. Expectation of life: 

(a) is the number of years most people live; 
(b) is a way of summarizing age-specific death rates; 
(c) is  the expected value of a particular probability distribution;  
(d) varies with age; 
(e) is derived from life tables . 
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3. In 197 1 ,  the SMR for cirrhosis of the liver for men was 773 for publicans 

and inn-keepers and 25 for window cleaners, both being significantly dif

ferent from 100 (Donnan and Haskey 1978). We can conclude that: 

(a) publicans are more than seven times as likely as the average person to die 
from cirrhosis of the liver. 

(b) the high SMR for publicans may be because they tend to be found in the 
older age groups .  

(c) being a publican causes cirrhosis of  the liver . 
(d) window cleaning protects men from cirrhosis of the liver . 
(e) window cleaners -are at high risk of cirrhosis of the liver. 

4. The age and sex structure of a population may be described by: 

(a) a life table; 
(b) a correlation coefficient; 
(c) a standardized mortality ratio ; 
(d) a population pyramid; 
(e) a bar chart . 



310 Mortality statistics and the structure of human populations 

5.  The following statistics are adjusted to allow for the age distribution of 

the population: 

(a) age-standardized mortality rate; 
(b) fertility rate; 
(c) perinatal mortality rate; 
(d) crude mortality rate; 
(e) expectation of life at birth .  

Exercise 16E 

A_nderson et al. ( 1 985) studied mortality associated with volatile substance 
abuse (VSA), often called glue sniffing. In this study all known deaths 
associated with VSA from 1 97 1  to 1 983 inclusive were collected, using 
sources including three press-cuttings agencies and a six-monthly systematic 
survey of all coroners . Cases were also notifed by the Office of Population 
Censuses and Surveys for England and Wales and by the Crown Office and 
procurators fiscal in Scotland. 

Table 1 6E.  l shows the age distribution of these deaths for Great Britain 
and for Scotland alone, with the corresponding age distributions at the 1 98 1  
decennial census . 

Table 16E.1 .  Volatile substance abuse mortality and 
population size, Great Britain and Scotland, 1971-83 
(Anderson et al. 1985) 

Great Britain 

Age group 
(years) VSA deaths 

0-9 0 
1 0- 1 4  44 
1 5 - 1 9  1 50 
20-24 45 
25-29 1 5  
30-39 8 
40-49 2 
50-59 7 
60 + 4 

Scotland 

Population 
(thousands) VSA deaths 

6770 0 
427 1 1 3  
4467 29 
3959 9 
36 16  0 
7408 0 
6055 0 
6242 0 

IO 769 0 

Population 
(thousands) 

653 
425 
447 
394 
342 
659 
574 
579 
962 
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I .  Calculate age-specific mortality rates for VSA per year and for the 
whole period . What is unusual about these age-specific mortality rates? 

2. Calculate the SMR for VSA deaths for Scotland. 
3 .  Calculate the 95 per cent confidence interval for this SMR. 
4. Does the number of deaths in Scotland appear particularly high? Apart 

from a lot of glue sniffing, are there any other factors which should be con
sidered as possible explanations for this finding? 
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Exercise 2M 

T means 'true ' ,  and F means 'false' , throughout the answers to the multiple
choice questions. 

1 .  (a) F, it is done for the comparability of the groups, (2 . 2) .  (b) F. (c) F .  
(d) T. (e) F,  (2.2). 

2 .  (a) T ,  (2 . 8) .  (b) F,  refers to cross-over trial, (2. 5) (c) F ,  patients do not 
know their treatment. They usually do know that they are in a trial . (d) F ,  
cross-over trial, (2 .5) . (e) T ,  (2 . 8) .  

3 .  (a) F ,  must be true to  randomization, vaccinated and refusing children 
are self-selected, (2.4) . (b) F.  (c) F, control group not offered vaccination.  
(d) F .  (e) F,  we can compare effect of a vaccination programme by 
comparing whole vaccination group, vaccinated and refusers to the controls .  

4. (a) T, (2 .5) .  (b) F,  order is randomized, (2. 5) .  (c) T, (2. 5) .  (d)  T,  (2 . 5) .  
(e) T, (2 .5) .  

5.  (a) F,  the purpose of placebos is make dissimilar treatments appear 
similar (2 .7) .  (b) F, only in randomized trials can we rely on comparability, 
and then only within the limits of random variation, (2 .2). (c) T,  (2. 7). (d) T, 
(2. 8) .  (e) T, (2 .7) .  

Exercise 2E 

1 .  Yes, it appears to . The death rate in the high-risk control group was 6.3 
times greater than in low-risk children. 

2. No. It  is  the allocation procedure itself that we are testing. 
3 .  We cannot be sure . There may be factors which are more important in 

other areas than they are in the study town. For example, if the study town 
was overwhelmingly populated by one ethnic group, factors relevant to other 
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ethnic groups would b e  missed . I n  fact, when the scoring system was tried i n  
a n  inner city area o f  London, it was not s o  effective a s  i n  this study. 

4 .  No. The month of birth distribution is different. This may be important 
if  the month of birth is related to mortality in the first year of life. As it 
happens, it is (Weatherall 1 976) and August is the birth month with second 
highest mortality . This biases the comparison . There are two ways round 
this . At the allocation stage, children who cannot be equally allocated could 
be excluded. This would be the 1 6  allocated to control on holidays and 20 per 
cent of those born between 7 July and 14 September 1 974. 

Alternatively at the analysis stage comparison should be made within 
allocation periods . This is complicated, but we would find the differences 
in rates for the 50-50 and 60-40 periods separately and then combine them. 
The 1 6  'controls' born on holidays have no observation children to com
pare to them, and so contribute no useful information. They should still be 
excluded. 

5 .  No.  Apart from the effect of the deviations from randomization, which 
is probably small and which we shall ignore from now on, the observed group 
consists of volunteers . They have all agreed to the surveillance, but the 
control group have not had the opportunity to agree or refuse. They will 
therefore not be comparable (see Section 2.3) .  

6.  The authors say that they did this to show that even the most extreme 
comparison did not achieve statistical significance. In other words , to show 
that the difference is not large enough to provide convincing evidence that 
surveillance lowers mortality. This is not a reasonable thing to do because we 
expect these groups to be different simply by the selection procedure, 
irrespective of whether the treatment has any effect . 

7 .  The only comparison which is true to the allocation procedure is to 
compare the full observation group, both observed and refused, with the 
controls. The mortality rate in the observation group is 

2 + 3 
---- x 1 000 = 6.0 per 1 000 627 + 2 1 0 

compared to 9 . 8  for the controls. 
8. The study shows that this method of identifying high-risk children 

works quite well. The study is based on too few deaths for any firm con
clusions to be drawn about the effectiveness of surveillance, although the 
data suggest that it may reduce mortality. The fall in mortality in the study 
town is impressive, but as the national data show there is a downward trend in 
mortality rates anyway. 

9. A definitive answer as to whether surveillance is effective could only be 
shown by a much larger study, perhaps covering several towns . This would be 
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expensive, but a national programme would be far more so. Health visitors 
represent resources which would have to be transferred from some other 
health service function. 

Exercise 3M 

I .  (a) F, can be anything (3 .3) .  (b) T, e .g .  people of Britain (3 .3 ) .  (c) T ,  
e .g .  all possible tosses of coins ( 3  .3) .  (d) T,  ( 3  .3) .  (e) T,  e .g .  all possible tosses 
of a coin,  or all patients as they would be if  given a new treatment. The latter 
does not physically exist but it is a population in which we may be very 
interested . 

2 .  (a) T, (3 . 3 ) .  (b) F ,  only tells us who is there on that day. (c) F, the 
hospital could be quite unusual . (d) F, only applies to current inpatients .  
Some diagnoses are less likely than others to lead to admission or to long stay. 
(e) T ,  (3 .2) .  

3 .  (a) T,  (3 .4) . (b) F, we must stick t o  the sample the random process 
produces (3 .4) .  (c) F, they can be (3 .4) ,  using standard errors, confidence 
intervals and significance tests (Chapters 8 and 9) . (d) T, (3.4) .  (e) F, it does 
not depend on the subject's characteristics at all , except for its being in the 
population. 

4. (a) F ,  some populations are unidentifiable. (b) T, (3 .4) .  (c) T ,  (3 .4) . 
(d) F, it can be very difficult.  (e) T, (3 .4) .  

5 .  (a) T ,  i t  is a random cluster sample (3 .4) .  (b) T,  (3 .4) .  (c) T,  each 
patient had the same chance of their hospital being chosen and then the same 
chance of being chosen within the hospital. This would not be so if  we chose a 
fixed number from each hospital rather than a fixed proportion, as those in  
small hospitals would be  more likely to  be  chosen than those in  large 
hospitals. (d) T, it is a random sample. (e) F, what about a sample with 
patients in every hospital? 

6. (a) F, we would not get enough cases of cancer of the oesophagus (3 . 7) .  
(b) T,  a case control study (3 .7) .  (c) F, we would not get enough cases (3 . 7) .  
(d) T ,  another form o f  case control study (3 .7) .  (e) T ,  a cohort study (3 . 7) .  

Exercise 3E 

1 .  Both control groups are drawn from populations which ere easy to get 
to , one being hospital patients without gastro-intestinal symptoms, the other 
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being fracture patients and their relatives. Both are matched for age and sex . 
Mayberry et al. also matched for social class and marital status . Apart from 
the matching factors, we have no way of knowing whether cases and controls 
are comparable, or any way of knowing whether controls are representative 
of the general population . This is usual in case control studies and is a maj or 
problem with this design . 

2. There are two obvious sources of bias : interviews were not blind and 
information is  being recalled by the subject. The latter is particularly a 
problem for data about the past. In James' study subjects were asked what 
they used to eat several years in the past. For the cases this was before a 
definite event, onset of Crohn' s  disease, but for the controls it was not, the 
time being time of onset of the disease in the matched case. 

3. The question in James' study was 'What did you use to eat in the past? '  
That in Mayberry et  al. was 'what do you eat now? '  

4. Of the 1 00 patients with Crohn's disease, 29  were current eaters of corn
flakes . Of 29 cases who knew of the cornflakes a�sociation, 12 were ex-eaters 
of cornflakes, and among the other 7 1 cases 2 1  were ex-eaters of cornflakes, 
giving a total of 33 past but not present eaters of cornflakes. Combining these 
with the 29 current consumers, we get 62 cases who had at some time been 
regular eaters of cornflakes . If we carry out the same calculation for the 
controls ,  we obtain (3 + 1 0) = 1 3  past eaters and with 22 current eaters this 
gives 35 sometime regular cornflakes eaters . Cases were more l ikely than 
controls to have eaten cornflakes regularly at some time, the proportion of 
cases reporting having eaten cornflakes being almost twice as great as for 
controls . Compare this to James ' data, where 17 /68 = 25 per cent of 
controls and 23/34 = 68 per cent of cases, 2 .  7 times as many, had eaten corn
flakes regularly. The results are similar. 

5. The relationship between Crohn's disease and reported consumption of 
cornflakes had a much smaller probability for the significance test and hence 
stronger evidence that a relationship existed (see Chapter 9). Also , only one 
case had never eaten cornflakes (it was also the most popular cereal among 
controls). 

6. Of the Crohn's cases, 67.6 per cent (i .e .  23/34) reported having eaten 
cornflakes regularly compared to 25 .0 per cent of controls. Thus cases were 
67 .6/25 .0  = 2. 7 times as likely as controls to report having eaten cornflakes. 
The corresponding ratios for the other cereals are: wheat, 2. 7; porridge, 1 .5 ;  
rice, 1 .6; bran, 6 . 1 ;  muesl i ,  2 .  7 .  Cornflakes does not stand out when w e  look 
at the data in this way. The small probability simply arises because it is the 
most popular cereal. 

7. We can conclude that there is no evidence that eating cornflakes is  more 
closely related to Crohn's  disease than is consumption of other cereals. The 
tendency for Crohn's case to report excessive eating of breakfast foods 
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before onset of the disease may be the result of greater variation in diet than 
in controls, as they try different foods in response to their symptoms. They 
may also be more likely to recall what they used to eat, being more aware of  
the effects of diet because of their disease. 

Exercise 4M 

1 .  (a) T, (4. 1 ) .  (b) F, parity is quantitative and discrete (4. 1 ) .  (c) F ,  
continuous (4. 1 ) .  (d) T,  (4. 1 ) .  (e) F, continuous (4. 1 ) .  

2 .  (a) T ,  (4. 1 ) .  (b) T,  (4. 1 ) .  (c) F, this i s  discrete (4 . 1 ) .  (d) T,  this includes 
years and fraction of a year (4. 1 ) .  (e) F, this is discrete (4. 1 ) .  

3 .  (a) F, the mean i s  greater (4.6).  (b) F, i t  could have more than one 
mode, we cannot say. (c) T,  (4.4). (d) F, this depends only on whether the 
variance is greater than 1 (4.7).  (e) T,  because the median is less than the 
mean (4. 5 ,  4.6) ,  

4. (a) T,  (4. 5) ,  (b) T,  (4 .3) .  (c) T,  (4. 3) .  (d) F, these only tell us the 
location and spread of the distribution (4.6,  4.7).  (e) T,  (4 .2) .  

5 .  (a) T ,  (4.6) .  (b) F, it is 2 .  The observations must be ordered before the 
central one is found (4.5) .  (c) T,  the most common observation is 2 which 
appears twice. (d) F, it is 7 - 1 = 6 (4.7).  (e) T,  the deviations from the mean 
are 0, - 2, 4, - 1 , - 1  so the sum of squares is 0 + 4 + 1 6  + 1 + 1 = 22 .  
These are ( n  - 1 )  = 5 - 1 = 4 degrees of freedom s o  variance = 22/ 4 = 5 .  5 
(4. 7) .  

Exercise 4E 

I .  Stem and leaf plot: 
2 2 9 
3 3 3 3 4 4 4 6 6 6 6 7 7 8 8 8 9 
4 0 0 0 2 3 4 4 4 5 6 7 7 7 8 9 9 
5 0 
6 0 

2. Minimum = 2.2 ,  maximum = 6.0.  )"'he median is the average of the 
20th and 2 1 st ordered observations, since the number of observations is  even. 
These are both 4.0, so the median is 4.0. The first quartile is between the 1 0th 
and 1 l th, which are both 3 .6. The third quartile has i = 0.75 x 4 1  
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B l o o d _g l u c o s E! 

Ma�< i m u m  

3 r d  q u a r t i l E!  

M E!  d i  a n  

1 s t  q u a 1- t  i 1 E! 

M i n i m u m  

Fig. 17.1 Box and whisker plot o f  blood glucose. 

6 

4 . 5 7 5  

4 
3. 6 

2 .  3 

3 1 7  

= 30.75 and lies between the 30th and 3 1 th observations, which are 4 . 5  and 
4.6, giving 4 .5  + 0.75 x 0. 1 = 4.575 . The box and whisker plot is shown in 
Fig. 1 7 . 1 .  

3 .  The frequency distribution is derived easily from the stem and leaf plot : 
Interval Frequency 

2.0-2.4  1 
2 .5-2 .9  1 
3 .0-3 .4 6 
3 . 5-3 .9  1 0  
4.0-4.4 1 1  
4. 5-4 .9  8 
5 .0-5.4 2 
5 . 5-5 .9  0 
6 .0-6.4  1 
Total 40 

4. The histogram is shown in Fig.  17 .2 .  
5 .  l;x = 1 62 .2 ;  x = 1 62 .2/40 = 4.055 
6. l;x2 = 676. 74 

l;x2 - (l;x)2 = 676.74 - 162 ·22 
= 1 9 .0 19  

n 40 
7 .  There are n - 1 = 40 - 1 = 39 degrees of freedom. 

V . 2 sum of squares anance, s = degrees of freedom 
1 9 . 109 

39 = 0.4876 67 
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Fig. 17.2 Histogram of blood glucose. 

8. s = .JS2 = .J0.487667 = 0.698 

x - 2s = 4.055 - 2 x 0.698 = 2 . 654 
x - s = 4.055 - 0.698 = 3 . 357 
x = 4.055 
x + s = 4.055 + 0.698 = 4. 753 
x + 2s = 4.055 + 2 x 0.698 = 5 .45 1  

9 .  Fig . 1 7  .2  also shows the mean and standard deviation marked o n  the 
glucose scale. The majority of points fall within one standard deviation of the 
mean and nearly all within two standard deviations of the mean. 

Exercise 5M 

1 .  (a) F ,  we have no idea how many would get better anyway. (b) T, (5 . 1 ) .  
(c) T, (5 .2) .  (d) T,  (2 . 1 ) .  (e) T, 66.67 per cent i s  2/3 . We may only have 3 
patients. 

2 .  (a) T,  (5 .2) .  (b) F,  it should be 1 730. We round up because of the 9. 
(c) F ,  this is given to six significant figures . To six decimal places it is 
1 729.543 7 1 0 .  (d) T, we round up because of the 7 .  (e) T ,  (5 .2) .  

3 .  (a) F ,  it is a bar chart (5 .5) .  A histogra!Il shows a frequency for a single 
variable, this shows the relationship between two variables. (b) T, (5 . 5) ,  see 
Fig . 1 7  . 3 .  (c) T, (5 .5) ,  see Fig. 1 7  . 3 .  (d) F, the time has no true zero to show. 
(e) T, (5 . 5) ,  see Fig .  1 7 . 3 .  
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Fig. 17.3 A dubious graph revised. 
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3 1 9  

4. (a) T,  (5 .8) .  (b) T,  (5 .8) .  (c) F ,  (5 . 8) .  (d) F,  there is no logarithm ofzero 
and a log scale cannot do this . (e) T, (5 . 8 ,  5A) . 

5 .  (a) F, shows the distribution of a single variable. (b) F, shows the 
distribution of a single categorical variable. (c) T,  (5 .6) .  (d) T,  (5 .5) .  (e) T ,  
(5 . 7 ) .  

Exercise 5E 

I .  This is  the frequency distribution of a qualitative variable, so a pie chart 
can be used to display it .  The calculations are as follows: 

Relative 

Category Frequency frequency A ngle 

schizophrenia 474 0. 323 1 1  1 1 6 
affective illness 277 0. 1 88 82 68 
organic brain syndrome 405 0.276 07 99 
subnormality 58 0.039 54 1 4  
alcoholism 57 0.038  85 1 4  
other 1 96 0. 1 33 6 1  48 
Total 1 467 1 .000 00 359 

Notice that we have lost one degree through rounding errors. We could work 
to fractions of a degree, but the eye is unlikely to spot the difference. The pie 
chart is  shown in Fig. 1 7 .4 .  
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Fig. 17.4 Pie chart showing the distribution of patients in Tooting Bee Hospital 
by diagnostic group. 

2. See Fig. 1 7 . 5 .  

P a r a l y t i c  p o l i o h y  t r e a t m e n t  H r o u p  
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Fig. 17.5 Bar chart showing the results of the Salk vaccine trial. 

3 .  There are several possibilities . In the original paper, Doll and Hill used 
a separate bar chart for each disease, as shown in Fig .  1 7  .6 .  

4 .  This is a frequency distribution of a quantitative variable, so a histo
gram is appropriate. See Fig. 1 7 .7 .  

5 .  Line graphs can be used here, as  we have simple time series (Fig. 1 7 . 8) .  
For an  explanation of the difference between years, see Exercise 1 3E .  
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Fig. 17.6 Mortality i n  British doctors b y  smoking habits after Doll and Hill 
(1956). 
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Fig. 17.7 Histogram showing parity of women attending antenatal clinics at 
St George's Hospital. 
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1 982 and 1983.  
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Exercise 6M 

I .  (a) T, (6 .2) .  (b) T, if they are mutually exclusive they cannot both 
happen . (c) F, this applies to independent events (6 .2) .  (d) F, there is no 
reason why this should be so. (e) F, only true if these are exhaustive, the only 
events which can happen (6 .3 ) .  

2.  (a) T,  0.2 x 0.05 = 0.01 (6 .2).  (b) F, the probabilities are multiplied . 
Clearly the probability of both must be less than that for each one. (c) T, a 
difficult question. The probability of both is 0.01 , so the probability of X 

alone is 0.20 - 0.01  = 0 . 1 9  and the probability of Y alone is 0.05 - 0.01  = 
0.04 .  The probability of having X or Y is the probability of X alone + 
probability of Y alone + probability of X and Y together, because these are 
three mutually exclusive events. Having X and having Y are not mutually 
exclusive as she can have both. There are several ways of arrivi�g at this 
result . (d) F, if she has X the probability of having Y is still 0.05, because X 

and Y are independent . Having X tells us nothing about whether she has Y. 
(e) F, see (d) . 

3 .  (a) T, (6.4) .  (b) F, this is continuous. (c) T, the probability of each 
random choice producing a responder is equal to the proportion of 
responders in the population, which is constant . (d) F, there is no set of  
independent trials here . We might expect the variable to  follow a Poisson 
Distribution (6 .7) .  (e) F, the number of hypertensives follows a Binomial 
Distribution, not the proportion, though its distribution is closely related to 
the Binomial . 

4. (a) F, it is one (6 .6) .  (b) T, independent (6.2). (c) T, (6.4). (d) F, at least 
one tail means one tail (0 .5) or two tails (0 .25). These are mutually exclusive, 
so the probability of at least one tail is 0.5 + 0.25 = 0.75 (e) T,  (6 . 3 ) .  

5 .  (a) F, should be µ +  2 (6 .6) . (b) T, (6 .6) . (c) T, (6.6). (d) F, should be 
4a2, (6 .6) . (e) T,  (6 .6) .  

6 .  (a) T,  (6.6) . (b) T, (6.6). (c) T, (6 .6) . (d) F, the variance of a difference 
is the sum of the variances (6 .6) .  (e) F, variances cannot be negative. 
Var( - X) = ( - 1 )2 x Var(X) = Var(X) . 

Exercise 6E 

I .  Probability of survival to age 10 .  This illustrates the frequency defini
tion of probability. The number out of 1000 surviving is 959, so the 
probability is 959/ 1000 = 0.959. 



, 

Exercise 6E 

2 .  Survival and death are mutually exclusive, exhaustive events. So 
Prob(survives) + Prob(dies) = 1 
Prob(dies) = 1 - 0.959 = 0.04 1  

3 .  A s  in 1 ,  these are just number surviving/ 1 000. 
Survive to age Probability 

1 0  0.959 
20 0.952 
30 0.938 
40 0.920 
50 0. 876 
60 0.758 
70 0. 524 
80 0.2 1 1  
90 0.022 

1 00 0.000 

323  

The events are not mutually exclusive, e .g .  a man cannot survive to age 20 i f  
he  does not survive to  age 1 0. This does not form a probability distribution . 

4. Prob(aged 60 survives to 70) = number alive at 70 divided by number 
alive at 60 

= 
524 

= 0.691 758 
5. Independent events .  Prob(survival 60 to 70) = 0.69 1 , probability both 

survive = 0.691  x 0 .69 1  = 0.478.  
6 .  The proportion surviving on average is the probability of survival = 

0.69 1 .  So a proportion of0 .69 1  of the 1 00 survive. We expect 0.691 x 1 00 = 

69 . 1  to survive. 
7 .  Prob(death in 2nd) 

= Prob(survives to 2nd) - Prob(survives to 3rd) 
= 0 .959 - 0.952 
= 0.007 

8 .  As in 7, we find 
Decade Probability of dying 

1 st 0.041 
2nd 0.007 
3rd 0 .0 14  
4th 0 .0 18  
5th 0.044 
6th 0. 1 1 8 
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Decade 

7th 
8th 
9th 

1 0th 

Probability of dying 

0.234 
0. 3 1 3  
0. 1 89 
0.022 

This is a set of mutually exclusive events and they are exhaustive - there is no 
other decade in which death can take place. The sum of the probabilities is 
therefore 1 .0 .  The distribution is shown in Fig . 1 7 .9 .  

3l 
..... 

.a nl .a 0 L 0.. 

0 .  3 

0 ·;:> 

0 .  1 

1 2 3 4 5 6 7 8 9 1 0  
O E! c: a d E! o f"  d E! a t h  

Fig. 17.9 Probability distribution o f  decade of death. 

9. We find the expected values or mean of a probability distribution by 
summing each value times its probability (Section 6.4): 

5 x 0.041 = 0.205 
1 5  x 0.007 = 0 . 1 05 
25 x 0.014 = 0. 350 
35  x 0.01 8  = 0.630 
45 x 0.044 = 1 .980 
55 x 0. 1 1 8 = 6.490 
65 x 0.234 = 1 5 .2 1 0  
7 5  x 0.3 1 3  = 23 .475 
85 x 0. 1 89 = 1 6 .065 
95 x 0.022 = 2.090 

66 .600 

Life expectancy at birth 66 .6  years 
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Exercise 7M 

I .  (a) T, (7 .2) .  (b) T, (7 .2 ,  7 .4 ,  7 . 5 ) .  (c) F, (7 .2 ) .  (d) F,  (7 .2 ) ,  see also 
( 1 5 . 5 ) .  (e) T ,  ( 7 . 2) .  

2 .  (a) F ,  i t  i s  symmetrical (7 . 3 ) .  (b )  F,  i t  i s  0 (7 . 3 ) .  (c) F ,  i t  i s  I ( 7 . 3 ) .  (d )  T ,  
(7 . 3 ) .  (e) T ,  because i t  i s  symmetrical (7 . 3 ,  4 . 6) .  

3 .  (a) T ,  (7 .2 ) .  (b )  T ,  a s  th i s  i s  t he  median (7 . 2 ) .  (c) F ,  we  do  no t  know.  
The Normal Distr ibut ion has  not h ing to  do wi th  normal physiology (7 .2 ) .  
(d) F, 2 . 5  per  cent do (7 .2) .  (e) F ,  2 . 5  per cent wi l l  be greater (7 .2 ) .  

4 .  (a) F ,  th i s  depends on the skewness (4 .6) ,  no t  the sample size.  (b )  T ,  
(4 .6) . (c )  T ,  because o f  t he central l imi t  theorem (7 .4) .  (d)  F,  t he sample size 
should not  affect t he mean . (e) F, depends on the shape of  t he frequency 
distr ibut ion and the nature of the variable .  

5 .  (a) T ,  mult iply by a constant (7.3) .  (b) F, fol lows a very s kew Chi
squared Distr ibution with one degree of  freedom (7A).  (c)  T ,  add a constant 
(7 . 3 ) .  (d) T ,  d i fference between two i ndependent Normal variables (7 . 3 ) .  
(e) F, the  N ormal Distribution is  on ly  preserved by add ing or subtracting 
variables or constants and mult iplying or dividing by constants . In  fact this 
fol lows the I Distribution with one degree of  freedom (7 A). 

Exercise 7E 

I .  The box and whisker plot shows a very s l ight degree of skewness,  the  
lower whisker  be ing shorter than the upper and the lower hal f o f  the box 
smaller t han the  upper. From the histogram i t  appears that  the ta i l s  are  a l i t t l e  
longer than the Normal curve o f  Fig .  7 .  I 0 would suggest . Figure 1 7 . I 0 shows 
the Normal Distr ibut ion wi th  the same mean and variance superimposed on 
the  his togram, which also i ndicates th is .  

2 .  We have n = 40. For i = I to 40 we want to  calcu late (i - �)In = 

(2i - 1 )/211 . This  gives us a probabi l i ty .  We use Table 7 .  I to fi nd the  �alue of  
the Normal Distribut ion corresponding to  th is probab i l i ty .  For example ,  for 
i = I we have 

(2i - I )  2 - l l --- =--=- = 0.0 1 25 
2n 2 x 40 80 

From Table 7. I we cannot find the value of x corresponding to P = 0.0 1 25 
direct ly ,  but we see t hat x = - 2. 3 corresponds to P = 0 .0 1 1 and x = - 2. 2 to 
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Fig. 17.10 Histogram of the blood glucose data with the corresponding Normal 
curve. 

P = 0.01 4. P = 0.0 1 25 is midway between these probabilities so we can 
estimate the value of x as midway between - 2. 3  and - 2 .2 ,  giving - 2 .25 .  
This corresponds to the lowest blood glucose, 2 .2 .  For  i = 2 we have 
P = 0.0375 . Referring to the table we have x = - 1 . 8 ,  P = 0.036 and 
x = - 1 . 7, P = 0.045 . For P = 0.0375 we must have xjust above - 1 .8 ,  about 
- 1 .7 8 .  The corresponding blood glucose is 2 .9 .  We do not have to be very 

accurate because we are only using this plot for a rough guide. We get a set of  
probabilities as  follows: 

i (2i - 1 )12n = P x blood glucose 
1 1 /80 = 0.0 1 25 - 2 .25 2 .2  
2 3/80 = 0.0375 - 1 .78 2 .9  
3 5/80 = 0.0500 - 1 .65 3 . 3  
4 7/80 = 0.0875 - 1 .36 3 . 3  

and s o  on. Because o f  the symmetry o f  the Normal Distribution, from i = 2 1  
onwards the values o f  x are those corresponding to 40 - i + 1 ,  but with a 
positive sign. The Normal plot is shown in Fig. 1 7  . 1 1 .  

3 .  The points do not lie on a straight line. The central part of the line is  not 
very far from it, but there are pronounced bends near each end. These bends 
reflect rather long tails of the distribution of blood glucose. If  the line showed 
a steady curve, rising less steeply as the blood glucose value increased, this 
would show simple skewness which can often be corrected by a log transfor
mation .  This would not work here; the bend at the lower end would be made 
worse. 

The deviation from a straight line is not very great, compared, say, to 
Fig. 7 .2 1 .  As we shall see in Chapter 1 0, such small deviations from 
Normality do not usually matter. 
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Fig. 17.11 Normal plot of the blood glucose data. 

Exercise 8M 

1 .  (a) F, standard deviation measures this . (b) F, see Chapter 1 5 .  (c) T 
(8 .2) .  (d) F ,  it is proportional to the square root of the number of  observa
tions . (e) F,  it must be less, or equal when the sample size is 1 .  

2 .  (a) F (8 .3 ) .  (b) T (8 . 3 ) .  (c) F,  the sample mean is always in the middle of 
limits . (d) T (8 . 3) .  (e) F.  

3 .  (a)  F .  (b) T,  sf.Jn .  (c) F .  (d) F.  (e) T,  n - 1 . 
4. (a) T , (8 . 1 ) . (b) T , Chapter 7 . (c) T (8 .2). (d) F, this is 1 00 x 0. 1 x 0.9 

= np( I  - p ) ,  it should be p ( I  - p)/n = 0. 1 x 0.9/ 1 00 = 0.0009. (e) F,  the 
number in the sample with the condition follows a Binomial Distribution, not 
the proportion .  

5 .  (a) F,  i t  depends on the variability of FEY 1 ,  not the mean, (8  .2) .  (b)  F,  
it depends on the number in the sample only. (c) T,  (8 .2) .  (d) T,  the sample 
should be random, (3 .2) .  (e) T,  8 .2 .  

Exercise 8E 

I .  The standard error of the mean is s!.fn. 
Insulin: s/.Jn = 0.068/.,,/227 = 0.0045 
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Oral : s/.Jn = 0.070/.J225 = 0.0047 
Diet : s/.Jn = 0.070/.Ji27 = 0.0062 
All non-insulin: sl.Jn = 0.070/..J352 = 0.0037 

2 .  Difference = 0 .744 - 0.756 = - 0.0 12  
standard error is 

..Jse12 + sei2 = ..J0.00472 + 0.00622 
= 0.0078 

The samples are large, so the 95 per cent confidence interval for the difference 
is 

- 0 . 0 1 2  - 1 .96 x 0.0078 to - 0.0 12  + 1 .96 x 0 .00 8 
= - 0.027 to 0.003 

3 .  Difference = 0.7 1 9  - 0 .748 = - 0.029 
Standard error is 

..Jse12 + sei2 = ..J0.00452 + 0.00372 
= 0.0059 

The 95 per cent confidence interval for the difference is 
- 0.029 - 1 .96 x 0.0059 to - 0.029 + 1 .96 x 0.0059 

= - 0 .040 to - 0. 0 1 8  
4. Magnesium levels are related t o  treatment. Among non-insulin treated 

patients there may be no difference, though the data suggest that the patients 
given oral hypoglycaemics may have lower plasma magnesium levels than 
those treated by diet alone. The difference could be as great as 0 .03 mmol/l . 
Patients receiving insulin have clearly lower plasma magnesium levels than 
non-insulin treated patients, the difference being between 0.02 and 
0.04 mmol/l . 

5 .  To estimate mean plasma magnesium to within 1 per cent, we require 
the 95 per cent confidence interval to be mean ± 0.01  x mean. So for a mean 
of 0.72, say, we require l .96 x s/..Jn = 0.01 x 0.72 and from the table we 
expect s to be about 0.07 so 

n = ( 1 .96 x 0.070)2 = 363 0.01 x 0.72 
We should add a few to allow for lost blood samples etc . ,  so 400 would be a 
good number to aim for. 
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Exercise 9M 

I .  (a) F, there may be other differences related to coffee drinking, such as 
smoking (3 .5 ) .  (b) T, (9 .6) .  The relationship may not be causal , however. 
(c) F, there is a relationship (9.6). (d) F, not necessarily causal . (e) F, we only 
know that they are related . 

2. (a) T, the number with lower readings could also be used (9. 2) .  (b) T.  
(c) F, i t  is quite possible for either to be higher and deviations in either 
direction are important (9 .5) .  (d) T, (9.2). n = 1 6  because the subject giving 
the same reading on both gives no information about the di fference and is 
excluded from the test . (e) T,  (2 .4). In fact , they were. 

3. (a) F, it is that the population means are equal (9 .7) .  (b) F, that is what 
we are trying to find out. (c) F, (8 . 5) .  (d) F, there is no need for this . (e) T,  
(9. 7). 

4 .  (a) F ,  it may be very effective (9.6). (b) F, (9 .6) .  (c) F, the trial is small 
and it may be due to chance. We must do a bigger trial. (d) F, this would 
completely invalidate the test. If the null hypothesis is true, the test will give a 
'significant' result one in 20 times . If we keep adding cases and doing many 
tests we have a very high chance of getting a 'significant ' result on one of 
them, even though the.re is no treatment effect. (e) T, we need to increase the 
power (9 . 9) .  

5 .  (a) T,  the large sample methods depend on estimates of variance 
obtained from the data. This estimate gets closer to the population value as 
the sample size increases (Sections 9. 7, 9 .8) .  (b) F, the chance of an error of 
the first kind is the significance level set in advance, say 5 per cent . (c) T, the 
larger the sample the more likely we are to detect a di fference should one exist 
(9 .9) .  (d) T, (9.9) .  (e) F, the null hypothesis depends on the phenomena we 
are investigating, not on the sample size . 

Exercise 9E 

I .  The null hypothesis is that the proportion of vaccinated and non
vaccinated children who develop polio are the same. We use the test for two 
proportions, Section 9 . 8 .  First we calculate the two proportions , Pi and p2, 
and the combined proportion, p. 

Vaccinated group: n i  = 200 745 ri = 33  
33  Pi = 200 745 = 0.000 1 64 39 
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Control group: n2 = 201 229 r2 = 1 1 5 
1 1 5  p2 = 201 229 = 0.000 5 7 1  49 

Combined : 
33 + 1 1 5 1 48 

p =
-------
200 745 + 201 229 401 974 = 0.000 368 1 8  

Test statistic: 

� 
p(l - p) ( _1 + _1 ) 

ni ni 
0.000 1 64 39 - 0.000 571  44 

0.000 368 1 8  x ( 1  - 0.000 368 1 8) x ( 200\45 
+ 

201
1
229 ) 

- 0.000 407 I O  

0.000 060 52 
- 6.72 

If the null hypothesis were true, this would be an observation from the 
Standard Normal Distribution. From Table 7 .2 we see that the probability of 
such an extreme value is much less than 0. 1 per cent or 0.00 1 .  Hence the 
difference is highly significant. 

2. This is a randomized double-blind trial and it is reasonable to suppose 
that any difference which occurred must be due to the treatment. 

3 .  To find the 95 per cent confidence interval we must see the standard 
error formula of Section 8 .6, which does not assume that there is no 
difference. The standard-error of the difference is 

se(pi _ Pi) = . / PiO - Pi) + P20 - P2) � n i ni 
0.000 1 64 39 x ( 1  - 0.000 1 64 39) 0.000 571  49 x ( 1  - 0.000 5 7 1  49) 

200 745 + 201 229 
= 0.000 060 47 

This is very similar to the standard error assuming equality of Pi and p2, 
because the sample sizes are so similar and the proportions so small that the 
1 - Pi and 1 - p2 terms could be omitted, being almost one. 

The 95 per cent confidence interval is found by 
Pi  - P2 ± 1 .96se(pi - P2) 
= 0.000 1 64 39 - 0.000 571  49 ± 1 . 96 x 0.000 060 47 
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- 0.000 407 1 0  ± 0.000 1 1 8 5 3  
- 0.000 525 6 3  t o  - 0.000 288 57 

Rounding to 2 significant figures gives us a reduction in proportion contract
ing polio of between 0.000 29 and 0.000 53 ,  or between 29 and 53 cases per 
100 000. With a control polio rate of 57 per 100 000, the vaccine was clearly 
effective. 

4. The determination of the sample size is a challenge, as we have not 
considered this for the comparison of two proportions, but only for two 
means . We follow the method of Section 9 . 10 .  As we saw in Section 9 .9 ,  the 
relationship between the power of a test for a given difference and a signi
ficance level of 0.05,  and the expected value of the test statistic is that the 
power is 1 - P(x) where 

x = 1 .96 - expected test statistic 
since the absolute value of the test statistic must exceed the c;ritical value P(x) 

is the cumulative Normal Distribution function of Table 7 . 1 .  For a power of 
90 per cent or 0 .90, x = - 1 .28 (Section 9 . 1 0) .  The test statistic is  

I p ( l - p ) (-1 + _1 ) V n1 n2 
For this trial the sample size are equal, n 1 = n2 = n ,  so p = {p1 + p2)/2 . We 
expect the proportion in the control group, p1 , to be about 50 per 1 00 000, or 
0.0005 . We assumep2 to be 60 per cent of this, 0 .0003 , to give the reduction in 
the number of cases of 40 per cent . So we want to have a highly probability of 
detecting a difference when p = (0.0005 + 0.0003)/2 = 0.0004 and (1 - p )  

1 - 0.0004 = 0.9996. 

x = 1 .96 _ ___ P_1 _-_P_2 __ _ � p ( l - p) (-1 + -1 ) 
n 1 ni 

_ 1 .28 = 1 .  96 _ __ o_._oo_o_5_-_o_._oo_o_3 __ v 0. 0004 x 0. 9996 x � 
- 3 .24 = _-_0_.0_0_02_ v 0.0�08 � o.o

n
oo8 = - 0.0002 

- 3 . 24 
= 0.000 061 729 
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0.0008 
n = ------ = 209 948 

0.000 06 1 7292 

So 200 000 children in each group is a very reasonable sample size for this 
study. After all,  a vaccine which reduced the disease by less than 40 per cent 
would not really be worth using. 

Exercise 10M 

1 .  (a) F, it is equivalent to the Normal Distribution method o f 8 . 3 .  (b) F, it 
is for quantitative data . (c) T.  (d) F, it is for a single or two matched samples. 
(e) T,  ( 1 0.2) .  

2 .  (a) F, ( 1 0.3 ) .  (b) T, ( 1 0.3) .  (c) F, this is what we are trying to find out.  
(d) T,  ( 10 . 3 ) .  (e) F, the large sample case is l ike the Normal test of 9 .7 ,  except 
for the common variance estimate. It is valid for any sample ize. 

3 .  (a) F, the assumption of a Normal Distribution would not be met. 
(b) T, the distribution followed by the data would not matter (9 .7) .  (c) T, 
( 1 0.4) .  (d) F, the sign test is for paired data. (e) F, we have measurements, 
not qualitative data. 

4. (a) F, ( 1 0 .5) .  (b) T, ( 1 0.5) .  (c) T, the more different the sample sizes 
are, the worse is the approximation to the t Distribution ( 1 0.5 ) .  (d) F, this 
becomes a large-sample Normal Distribution test (9 .7) .  (e) F, grouping of  
data is not a serious problem ( 1 0 .5) .  

5 .  (a) F, for a Normal Distribution x and s2 are independent (7A) . (b)  T ,  
(7.4). (c) T,  i t  will follow this distribution multiplied by  u2/(n - 1 ) ,  where a2 

is the population variance. {d) F, this is only true i f  the mean of the 
population distribution is zero ( I O. I ) . (e) T,  (7A) . 

Exercise 10E 

I .  The di fferences for P.(02) and compliance are shown in Table I 7. I .  The 
stem and leaf plot is :  

4 2 
3 
2 0 

I 

0 2 6 6 7 
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- 0  1 3 5 5 6 8 
- 1  6 7 
- 2  8 
- 3  
- 4  6 

The distribution is fairly symmetrical, though the tails are rather long for a 
Normal Distribution.  The t Distribution should be a reasonable 
approximation here, as there is little skewness. 

2 .  
L:x = - 5 .2  L:x2 = 58 .94 x = - 0. 325 

L:x2 - (L:x)2 
= 58 .94 - ( - 5 ·2>2 = 57 .25 

n 1 6 

s2 = _
I 

x 57.25 = 3 . 8 1 67 s = 1 .9536 1 5  g = � 3 ·��67 
= 0.48841 

3. We have 15 degrees of freedom, so, from Table I O. I ,  t = 2 . 3 1 .  The 95 
per cent confidence interval is 

x - t {!f. to x + t {!f. 
- 0. 325 - 2 . 1 3  x 0.48841 to - 0 .325 + 2. 1 3  x 0.4884 1 

- 1 0 .365 3 1  to 0.7 1 53 1 
= - 1 .4 to 0 .7 .  

There is little evidence of an effect of waveform on P.(02) .  Any effect 
which exists is quite small. 
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Fig. 17.12 Difference versus mean for Pa (02) . 
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Table 17.1. Differences and means for p0(02) and compliance 

P.(02) Compliance 

Patient Constant Decelerating Difference Mean Constant 

I 9 . 1  1 0 .8 - 1 .7 9 .95 65.4 
2 5 .6 5 .9  - 0.3 5 .75 73 .7  
3 6 .7  7 .2  - 0.5 6.95 37.4 
4 8 . 1 7 .9  0 .2  8 .0  26.3 
5 1 6 .2 1 7 .0 - 0.8 1 6 .6 65.0 
6 1 1 . 5 1 1 .6 - 0 . 1  1 1 .55 35 .2  
7 7 . 9  8 . 4  -0.5  8 . 1 5  24.7 
8 7 .2  10 .0  - 2.8 8 .6 23.0 
9 1 7 . 7  22.3 - 4.6 20.0 1 33 .2 

1 0  10 .5  I I .  I - 0.6 1 0. 8  38.4 
I I  9 .5  I I .  I - 1 .6 1 0. 3  29.2 
1 2  1 3 .7 1 1 . 7  2 . 0  1 2 . 7  28 .3  
13  9 .7  9 .0 0 .7  9 .35  46.6 
14 10 .5  9 .9 0 .6 10 .2  6 1 .5 
1 5  6 . 9  6 .3  0.6 6.6 25 . 7  
1 6  1 8 . 1  1 3 .9 4.2 1 6 .0 48.7 

Decelerating Difference 

72.9 - 7 .5 
94.4 - 20.7 
43 .3  - 5. 9  
29.0 - 2.7 
66.4 - 1 .4 
36.4 - 1 .2 
27 . 7  - 3 .0 
27.5 - 4.5 

1 78 . 2  - 45 .0 
39 .3  - 0.9 
3 1 . 8  - 2.6 
26.9 1 .4 
45.0 1 .6 
58 .2  3 . 3  
25 .7  0 .0  
42 .3  6 .4  

Mean 

69. 1 5  
84.05 
40.35  
27.65 
65 .7  
35 .8  
26.2 
25 .25 

1 5 5 . 7  
38 .85 
30 .5  
27 .6  
45 .8  
59.85 
25 . 7  
45 .5  

w 
w 
""' 

Cll 
e.. 
� 
s· 
� C/l 
,... 0 
(1) >< (1) ..., (") c;;· (1) C/l 
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4.  Fig . 17 . 1 2  shows the difference against the mean. There is some 
indication that the difference increases with the mean, but that the relation
ship is not strong. A logarithmic transformation of p.(02) may improve 
matters, but given the robustness of the t test this does not seem necessary. 

5. Stem and leaf plot for compliance: 
0 0 3 6 

- 0  0 2 2 3 4 5 7 
- 1  
- 2  0 
- 3  
- 4  5 

The plot of difference against mean is Fig. 1 7  . 1 3 .  The distribution is highly 
skewed and the difference closely related to the mean. 
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Fig. 17.13 Difference versus mean for compliance. 

6.  �x = - 82 . 7  �x2 = 2648 .43 x = - 5 . 1 68 75  
�x2 - (��)2 = 2648 .43 - ( -��-7)2 = 2220. 974 3 8  

s2 = /5 x 2220.974 38 = 1 48 .064 96 g 
= 
� 148 .�:4 96 = 3 . 0420 

S = l 2 . 1 68 

7 .  As in 3 above, t = 2. 1 3 .  The 95 per cent confidence interval is 
- 5 . 1 68 75 - 2. 1 3  x 3 . 0420 to - 5 . 1 68 75 + 2. 1 3  x 3 . 0420 

- 1 1 .6482 to 1 . 3 1 07 
= - 1 2 to + 1 
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Table 17 .2. Difference and mean for log-transformed 
compliance (to base 10) 

Log compl iance 

Patient Constant Decelerating Difference Mean 

I 1 .8 1 6  1 .863 -0.047 1 . 8395 
2 1 .867 1 .975 - 0. 1 08 1 .92 1 
3 1 . 573 1 .636 - 0.063 1 .6045 
4 1 .420 1 .462 -0 .042 1 .44 1 
5 1 .8 1 3  1 .822 - 0.009 1 .8 1 75 
6 1 . 547 1 . 561 - 0. 0 1 4  1 . 554 
7 1 . 393 1 .442 - 0.049 1 .4 1 75 
8 1 . 362 1 .439 -0.077 1 .400_ 
9 2 . 1 25 2.25 1  - 0. 1 26 2 . 1 88 

1 0  1 . 584 1 .594 - 0 .0 1 0  1 . 589 
I I  1 .465 1 . 502 -0 .037 I .4835 
1 2  1 .452 1 .430 0.022 1 .44 1 
1 3  1 .668 1 .653 0.0 1 5  1 .6605 
1 4  1 .789 1 . 765 0.024 1 .777 
1 5  1 .4 1 0  1 .4 1 0  0.000 1 .4 1 0  
1 6  1 .688 1 .626 0.062 1 . 657 

8. Table 1 7  .2 shows the log-transformed data, using logs to base 1 0, with 
their differences and sums . The stem and leaf plot is 

0.06 2 
0.05 
0 .04 
0.03 
0.02 2 4 
0 .01  5 
0.00 0 

- 0.00 9 
- 0.0 1  0 4 
- 0 .02 
- 0.03 7 
- 0 .04 2 7 9 
- 0 .05 
- 0 .06 3 
- 0 .07 7 
- 0.08 
- 0 .09 
- 0 . 1 0 8 
- 0 . 1 1  
- 0 . 1 2 6 
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This is  a little unwieldy and we can condense i t  by pairing the first significant 
digits: 

0 .06 2 

0 .04 

0 .02 2 4 

0 .00 0 5 

- 0 .00 9 0 4 

- 0. 02 7 

- 0 .04 2 7 9 

- 0.06 3 7 

- 0 .08 

- 0 . I O 8 

- 0 . 1 2  6 

The difference against the mean is shown in Fig . 1 7  . 14 .  The differences are 
still related to the mean but not nearly so strongly as in Fig. 1 7  . 1 3 .  The 
distribution is more symmetrical and the use of the t Distribution seems 
much more reasonable than for the untransformed data. 
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Fig. 17.14 Difference versus mean for log compliance. 

9 .  Ix = - 0 .45 Ix2 = 0.049 886 X =  - 0 .028 1 25 

Ix2 -
(Ix)2 

= 0 .049 886 -
( - 0 .45 )2 

= 0 .037 229 75 
n 1 6  

s 2  = _l x 0.037  229 7 5  = 0.002 48 1 98 
1 5  ) � 

= 
� 0 .002

1

:8 l 98 
= 0 .0 1 2 453 

s = 0 .049 820 



338 Solutions to exercises 

The 95 per cent confidence interval is 
- 0.028 1 25 - 2 . 1 3  x 0 .0 12  455 to - 0.028 1 25 + 2 . 1 3  x 0 .0 12  455 

= - 0.054 654 to -0 .001 5  959 

If  we transform these limits back by taking the antilogs we get 0 . 882 to 0 .996. 
This means that the compliance with a decelerating waveform is between 
0 .882 and 0.996 times that with a constant waveform. There is some evidence 
that waveform has an effect , whereas with the untransformed data the 
confidence interval for the difference included zero . Because of the skewness 
of the raw data the confidence interval was too wide. 

1 0 .  We can conclude that there is little evidence of any effect on P.(02) ,  although we  cannot exclude the possibility that the decelerating waveform 
produces a mean reduction of up to 1 .4 kPa, or an increase of up to 0. 7 kPa. 
There is some evidence of a reduction in mean compliance, which could be up 
to 12 per cent (from (1 - 0. 882) x 1 00), but could also be negligibly small . 

Exercise 1 1M 

1 .  {a) T, ( 1 1 . 1 0) .  (b) T, ( 1 1 . 1 1 ) .  (c) F, should be O, ( 1 1 . 1 0) .  (d) F, ( 1 1 . 1 0) .  
(e) F,  this i s  the regression coefficient ( 1 1 .3 ) .  

2 .  (a) F ,  usually has non-zero intercept, ( 1 1 .3 ) .  (b)  F,  ( 1 1 . 3) .  (c) F ,  the 
slope and the intercept have dimensions, ( 1 1 .3 ) .  (d) T,  we calculate a by 
Ji =  a +  bx, ( 1 1 .3 ) .  (e) T,  ( 1 1 .2 ,  1 1 . 3 ,  1 1 .4). 

3. (a) F,  the independent variable has no error in the regression model 
( 1 1 . 3 ) .  (b) T,  ( 1 1 .5) .  (c) T,  ( 1 1 .6) .  (d) F, only if necessary to achieve (b) and 
(c) . (e) F, there is a scatter about the line, ( 1 1 .3 ) .  

4 .  (a) F ,  they are closely related . In fact y = log(x) exactly .  (b)  F ,  the 
correlation coefficient is 0.89, ( 1 1 . 1 0) .  (c) T,  see (b ) . (d) T,  see (a) . (e) F, this 
is not a straight line. Polynomial regression would be better ( 1 1 .9) . 

5 .  (a) F, knowledge of x tells us something about y (6 . 1 ) .  (b) T, the 
correlation coefficient is zero ( 1 1 . 1 0) .  ( c) F, for part of the scale y decreases 
as x increases . (d) F, this is not a straight line . (e) T, ( 1 1 .9) . 

Exercise 1 1E 

1 .  females : 



males : 

total : 

Exercise 1 1E 

b = sum o f  products about mean 
sum of sq uares height 

= 2 . 9 1 2  1 9  
a = mean PEFR -

b 
x mean height 

4206 . 948 37 
1 444.600 47 

= 474.069 768 - 2 . 9 1 2  19 x 1 65 . 937  209 
- 9 . 1 70 9 1  

PEFR = - 9 . 1 7  + 2 . 9 1  x height 

8993 . 36  b = ----- = 3 . 966 20 
2267 .499 3 1  

a =  568 . 2  - 3 . 96620 x 1 77 . 303 448 
- 1 35 .02 1 266 

PEFR = - 1 35 .02 + 3 . 97 x height 

b = 39 6 1 9 .589 1  = 5 _ 740 I I 
6902 . 23 1 72 

a =  528 . 1 24 753 - 5 . 740 1 1  x I 72.464 356 
- 46 1 . 839  62 

PEFR = - 46 1 . 84 + 5 .74 x height 

3 3 9  

2 .  The  slope for the  combi ned group i s  considerably greater t han for either 
sex separately, which suggest s  an increase in  PEFR for males apart from t hat 
due to  height .  Note that the intercepts ,  wh ich are well  outside the range of t he 
data, are meaningless on t heir own . 

3 .  females :  

males : 

sum of  products about mean 
r = ---------'-------------

'1(sum of  sq uares height x sum of  squares PEFR) 
4206 . 948 37 

'1( 1 444 . 600 47 x I O I  1 07 . 65 1 )  
= 0 . 3 5  

8993 . 36  
r = -------------

-1(2267 .499 3 1  x 226 873 . 86) 
= 0.40 

4. We would expect the correlat ion for females to be less because t hey h ave 
a smaller range of height t han do males . The smaller the range of height , the 
smaller wi l l  be the  proport ion of  variabi l i ty  in  PEFR which can be explained 
by variat ions in heig h t .  This proport ion is r2 (Sect ion I I . 1 0) .  
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Exercise 1 2M 

1 .  (a) T, ( 1 0.3 ) .  (b) F, this is for paired data (9.2). (c) T, ( 1 2 . 2) .  (d) F, for 
paired data, ( 1 2 .3 ) .  (e) F, this looks for the existence of relationships between 
two ordinal variables , not a comparison between two groups ( 1 2.4,  1 2.5 ) .  

2 .  (a) F,  there i s  no dependent variable in  correlation ( 12 .5 ,  1 1 . 1 2) .  (b) T,  
( 1 2 . 5 ) .  (c) F, this  copes well with ties ( 1 2 .5 ) .  (d) T ,  ( 1 2 .5 ) .  (e) T ,  this would 
not affect the rank order of the observation. 

3 .  (a) F, i f  Normal assumptions are met the methods using them are better 
( 1 2 . 7) .  (b) T, ( 1 2 .7) .  (c) F, estimation of confidence intervals using these 
methods is difficult. (d) F, they required the assumption that the scale is 
ordinal , i . e.  that the data can be ranked . (e) T, this is what they are for .  

4 .  (a) T,  ( 1 0.2).  (b) F,  for two samples ( 1 2 .2) .  (c) T, (9 .2) .  (d) T,  ( 1 2 . 3 ) .  
(e) F, this would look for a relationship between responses on the two 
treatments. 

5.  (a) T,  ( 1 2 . 5) .  (b) F, U does not have expected value zero if the null 
hypothesis is true ( 1 2 .2) .  (c) F, ( 1 2 . 3) .  (d) T,  ( 1 2.4).  (e) F, this would be an 
extreme value (8 .2) .  

Exercise 12E 

1 .  Sign test for P.(02) . The differences are shown in Table 17 .  I .  We have 6 
positive and 1 0  negative differences, with no zeros . The null hypothesis is that 
there is no tendency for the constant waveform to produce higher or lower 
p.(02) than the decelerating waveform. Under this null hypothesis the 
number of positives is from a Binomial Distribution with n = 16 and p = f .  
We have 

Prob(r = 6) = 
1 6 !  

x (t) 16 = 0 . 1 22 1 9  6 !  x 10 !  
Prob(r = 5) = 1 6 !  

x ( f  ) 16 = 0.066 65 5 !  x 1 1  ! 
Prob(r = 4) = 

1 6 !  
x ( f  )16 = 0.027 7 7  4 !  x 12 !  

Prob(r = 3) = 
1 6 !  

x ( f  )16 = 0.008 54 3 !  x 1 3 !  
Prob(r = 2) = 

1 6 !  
x ( f  )16 = 0.00 1  8 3  2 !  x 14 !  
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1 6 !  
Prob(r = 1 )  = x {t) 16 = 0.000 24 

1 ! x 1 5 !  
1 6 !  Prob(r = 0) = x <±)'6 = 0.000 02 

O! x 1 6 !  

Prob(r ,,; 6) = 0.227 24 

341 

Since this Binomial Distribution is symmetrical, the probability of an equally 
extreme result in the opposite direction is Prob(r > 10) = 0.227 24 and the 
two-sided probability is  the sum of these, 0.227 24 + 0.227 24 = 0.454 48 . 
The difference is not significant and we have no evidence of an effect . 

2 .  We use the Wilcoxon test for matched data. We first rank the 
differences irrespective of sign, and then sum the ranks of the negative 
differences . 
Difference - 0. 1  0.2 - 0. 3  - 0.5  - 0.5  - 0.6 0 .6 0.6 
Rank 2 3 4-'-2 4-'-2 7 7 7 

Difference 0.7 - 0. 8  - 1 .6 - 1 .7 2.0 - 2 . 8  4 . 2  - 4.6 
Rank 9 1 0  1 1  1 2  1 3  1 4  1 5  1 6  

Sum o f  ranks for positive differences, T = 2 + 7 + 7 + 9 + 1 3  + 1 5  = 53 .  
From Table 1 3 . 5  the 5 per cent point i s  30  and Texceeds this. The difference is 
not significant . 

3 .  All three methods tell us that we have no evidence of a difference, but 
the t Distribution method gives us upper and lower estimates for any dif
ference which may exist .  

4. The differences are shown in Table 1 7  . 1 .  We have 4 positive, 1 1  
negative and 1 zero . Under the null hypothesis of no difference, the number 
of positives is  from the Binomial Distribution with p = I• n = 1 5 .  We have 
n = 1 5  because the single zero contributes no information about the direction 
of the difference. For Prob(r < 4) we have 

Prob(r = 4) = 
1 5  ! 

4 !  x 1 1  ! 

Prob(r = 3) = 
1 5 !  

3 !  x 1 2 !  

Prob(r = 2)  = 
1 5 !  

2 !  x 1 3 !  

Prob(r = I )  = 
1 5 !  

1 ! x 1 4 ! 

Prob(r = 0) = 
1 5 !  

O !  x 1 5 !  

Prob(r ,,; 4) 

x <±)15 = 0.04 1  66 

X {t)15 = 0.0 1 3  89 

x <±)'5 = 0.003 20 

x <±) '5 = 0.000 46 

x <±) '5 = 0.000 03 

= 0.059 24 
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If we double this for a two-sided test we get 0. I 1 8  48 , again not significant. 
5. Using the Wilcoxon matched-pairs test we get 

Difference - 0.9  - 1 .2 - 1 .4 1 .4 1 .6 - 2 .6 - 2.7 - 3 .0 
Rank I 2 3.!. 2 3 .!. 2 5 6 7 8 

Difference 3 . 3  - 4 .5  - 5 .9 6.4 - 7 .5 - 20.7 - 45 .0  
Rank 9 I O  I I 1 2  1 3  1 4  1 5  

A s  for the sign test, the zero is omitted. Sum of ranks for positive 
differences is 

T = 3± + 5 + 9 + 12 = 29.5 

From Table 1 3 . 5  the 5 per cent point is  25, which T exceeds ,  so the 
difference is  not significant at the 5 per cent level. The three tests give similar 
answers . 

6. Using the log-transformed differences in Table I 7 .2 ,  we still have 4 
positives, I 1 negatives and I zero, with a sign test probability of 0. I 1 8  48 . 
The transformation does not alter the direction of the changes and so does 
not affect the sign test. 

7. For the Wilcoxon matched-pairs test on the log compliance: 
Difference - 0.009 - 0.0 IO  - 0.0 14 0.0 1 5  0 .022 0.024 
Rank 2 3 4 5 6 

Difference - 0.037 - 0.042 - 0.047 - 0.049 0.062 - 0.063 
Rank 7 8 9 I O  I I 1 2  

Difference - 0.077 - O . I 08 -0 . 1 26 
Rank 1 3  1 4  1 5  

T = 4 + 5 + 6 + I 1 = 26 

This is just above the 5 per cent point of 25 and is different from that in the 
untransformed data. This is because the transformation has altered the 
relative size of the differences . This test assumes interval data. By changing to 
a log scale we have moved to a scale where the differences are more 
comparable, because the change does depend on the magnitude of the 
original value. This does not happen with the other rank tests, the 
Mann-Whitney U test and rank correlation coefficients , which involve no 
differencing. 

8 .  We have found no evidence of an effect on p.(02) and although there is 
a possibility of a reduction in compliance it does not reach the conventional 
level of significance. 

9. The conclusions are broadly similar, but the effect on compliance is 
more strongly suggested by the t method. Provided the data can be trans
formed to approximate Normality the t Distribution analysis is more 
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powerful ,  and as it also gives confidence intervals more· easily, I would prefer 
i t .  

Exercise 1 3M 

1 .  (a) F ,  ( 1 3 . 1 ) .  (b) T, ( 1 3 . 1 ) .  (c) F, (5 - 1 )  x (3 - 1 )  = 8 ,  ( 1 3 . 1 ) .  (d) T, 80 
per cent x 1 5  = 1 2  cells must be > 5 , ( 1 3 .2). (e) F, ( 1 3 .2). 

2 .  (a) T ,  80 per cent of 4 is greater than 3 so all must be > 5 ,  ( 1 3 .2) .  (b) F ,  
for categorical data, ( 13  . 1 ) .  (c) F ,  as b .  (d) F ,  ( 13  .2) .  (e) F ,  can be as small as 
20, if all row and column totals are 10 . 

3 .  (a) T ,  ( 1 3 . 1 ) .  (b) T ,  ( 1 3 . 8) .  (c) F, the tests are independent. (d) T, 
(2 - 1) x (2 - 1) = 1 ,  ( 1 3 . 1 ) .  (e) F ,  with such large numbers it does not make 
much difference. Without the continuity correction we get chi-squared = 

1 24 .5 ,  with it we get chi-squared = 1 1 9.4, ( 1 3 .6) .  

4 .  (a) T, we  look a t  the smoking of  each matched pair. (b) T, ( 1 3  . 8 ) .  (c) F ,  
we use the chi-squared test ( 1 3 . 1 ) .  (d) F ,  this is continuous variable, we use 
the paired t method ( 10.2) .  (e) F, there are two independent samples, we use 
the chi-squared test ( 1 3 . 1 ) .  

5 .  (a) T, ( 1 3 . 5 ) .  (b) T ,  ( 1 3 .5 ) .  (c) T ,  ( 1 3 .6) .  (d) T ,  this i s  its usual 
application, ( 1 3 . 5) .  (e) T, the factorials of large numbers can be difficult to 
calculate. 

Exercise 1 3E 

1 .  The heatwave appears to begin in week 1 0  and continue to include 
week 1 7 .  This period was much hotter than the corresponding period of 
1 982. 

2 .  There were 1 78 admissions during the heatwave in 1 983 and 1 10 in the 
corresponding weeks of 1 982. We could test the null hypothesis that these 
came from distributions with the same admission rate and we would get a 
significant difference . This would not be convincing, however . It could be 
due to other factors, such as the closure of another hospital with resulting 
changes in catchment area. 

3. The cross-tabulation is shown in Table 1 7 .  3 .  
4 .  The null hypothesis i s  that there i s  n o  association between year and 

period, in other words that the distribution of admissions between the 
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Table 17.3. Cross-tabulation of time period by 
year for geriatric admissions 

Period 

before during after 
Year heatwave heatwave heatwave Total 

1 982 1 90 1 1 0 82 382 
1 983 1 80 1 78 1 1 0 468 

Total 370 288 1 92 850 

periods will be the same for each year. The expected values are shown in 
Table 1 7 .4 .  

Table 17.4. Expected frequencies for Table 
1 7 .3  

Period 

before during after 
Year heatwave heatwave heatwave Total 

1 982 1 66.3  1 29.4 86.3 382 
1 983 203 .7 1 58 .6 105.7 468 

Total 370 288 1 92 850 

5 .  The chi-squared statistic is given by: 

� (0 - £)2 

E 
( 1 90 - 1 66.3)2 ( 1 10 - 1 29 .4)2 (82 - 86.3)2 

�����- + + 
1 66 .3 1 29.4 86.3 

( 1 80 - 203 .7)2 ( 1 78 - 1 58 .6)2 ( 1 1 0  - 1 05 . 7)2 
+ + -'--���---'- + �����-

203 . 7 1 58 .6  1 05 . 7  
1 1 . 806 

There are 2 rows and 3 columns, giving us (2 - 1 )  x (3 - 1 )  = 2 degrees of 
freedom. Thus we have chi-squared = 1 1 .8 with 2 degrees of freedom. From 
Table 14 . 3  we see that this has probability of less than 0.0 1 . The data are not 
consistent with the null hypothesis. The evidence supports the view that 
admissions rose by more than could be ascribed to chance during the 1 983 
heatwave. We cannot be certain that this was due to the heatwave and not 
some other factor which happened to operate at the same time. 

6 .  We could see whether the same effect occurred in other districts 
between 1 982 and 1 983 .  We could also look at older records to see whether 
there was a similar increase in admissions, say for the heatwaves of 1 975 and 
1 976. 
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Exercise 14M 

1 .  (a) T. (b) F, this is dichotomous, ( 14.2). (c) F, this is only ordinal, 
( 1 4.2) .  (d) T. (e) T. 

2. (a) F, ( 1 4 .5 ) .  (b) T, ( 14 .5) .  (c) T, ( 14 .5) .  (d) T, though only the rank 
order is used, ( 1 4 .5) .  (e) T, though only the rank order is used, ( 1 4.5 ) .  

3 .  (a) F, for independent samples, ( 14.3 ) .  (b) T, ( 14 .4) . (c) T,  ( 1 4.4). 
(d) F, the sample is too small . (e) T, ( 1 4.4) . 

4. (a) F ,  for continuous data, ( 12 . 3 ) .  (b) F, for continuous data, ( 1 2 . 1 0) .  
(c) F, for continuous data, ( 1 0.2) . (d) F, for ordinal data, ( 1 2 . 5 ) .  (e) T ,  
( 1 3 . 1 ) .  

5 .  (a) T,  ( 1 4.2). (b) F ,  for dichotomous data, ( 14 .2) .  (c) T ,  the two-sample 
t test , ( 1 4 .2) .  (d) F, for a single or matched sample, ( 1 4.3 ) .  (e) F, for a single 
or matched sample, ( 14 .3 ) .  

Exercise 14E 

1 .  Overall preference: we have one sample of patients, of whom 12 pre
ferred A, 1 4  preferred B and 4 did not express a preference. We can use a 
Binomial or sign test (Section 8 . 1 ) ,  only considering those who expressed a 
preference. Those for A are positives, those for B are negatives . We get two
sided p = 0.85 ,  not significant. 

Preference and order: we have the relationship between two variables, pre
ference and order, both nominal . We set up a two-way table and do a chi
squared test. For the 3 by 2 table we have two expected frequencies less than 
five, so we must edit the table. There are no obvious combinations, so we 
delete those who expressed no preference, leaving a 2 by 2 table, x2 = 1 . 3 ,  
1 d . f . ,  p > 0.05 . 

2. Both variables have very non-Normal Distributions. The pH is bimodal 
and nitrite is highly skew. It might be possible to transform the nitrites to a 
Normal Distribution but the transformation would not be a simple one. The 
zero prevents a simple logarithmic transformation, for example. Because of 
this, regression and correlation are not appropriate and rank correlation can 
be used . Spearman's p = 0.58 and Kendall 's T = 0.40 both give a probability 
of 0.004. 

3 .  The trial will have to be a two-group comparison, as we cannot wait 
for our subjects to have two labours. The outcome, mode of delivery, is 
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categorical and we are particularly interested in the proportion of instru
mental deliveries . We therefore plan our trial as a comparison of two propor
tions . We need to know what proportion of epidurals have instrumental 
deliveries and what sort of reduction in the rate we are looking for .  The first is 
fairly easy to get , the second more difficult. One approach is to use the 
methods of 9 . 1 0 to show the size of reduction we can detect with reasonable 
power for a range of sample sizes . Then we can use the proportion of women 
given epidurals and the number of deliveries per year to estimate how long a 
trial these different sample sizes would require and decide whether it is 
feasible to detect the sort of difference we may expect or hope for .  

4 .  We must use the total number of patients we randomized to treatments, 
because these are the comparable groups. Thus we have 1 7 1 1  active treatment 
patients including 1 5  deaths, and 1 706 placebo patients with 35 deaths. A chi
squared test gives us x 2 = 8 .2 ,  d . f. = 1 ,  p < 0.01 . A comparison of two 
proportions gives a difference of - 0.01 1 7  with 95 per cent confidence 
interval - 0 .0 198 to - 0.0037 (8 .6) and test of significance using the Standard 
Normal Distribution gives a value of 2. 86, p < 0.0 1 ,  (9 .8) .  

5 .  The data are paired so we use a paired t test ( 1 0.2) . The assumption of  a 
Normal Distribution for the differences should be met as PEFR itself follows 
a Normal Distribution fairly well .  We get t = 6.4515 .05 = 1 . 3 ,  d . f. = 3 1 ,  
which is not significant, and a 95 per cent confidence interval of - 3 . 85 to 
1 6 .75 litre/min. 

6 .  We want to test for the relationship between two variables, which are 
both presented as categorical. We use a chi-squared test for a contingency 
table, x 2 = 38 . 1 ,  d . f. = 6, p < 0.00 1 .  One possibility is that some other 
variable, such as the mother' s  smoking, or poverty, is related to both 
maternal age and asthma. Another is that there is a cohort effect .  All the 
age 14- 1 9  mothers were born during the Second World War, and some 
common historical experience may have produced the asthma in their 
children. 

7. We have two large samples and can do the Normal comparison of  two 
means (8 .5 ) .  The standard error of the difference is 0 .0178 s and the observed 
difference is 0.02 s, giving a 95 per cent confidence interval of - 0. 0 1 5  to 
0.055 for the excess mean transit time (MTT) in the controls .  For matched 
cases only, for each case we could calculate the mean MTT for the two 
controls matched to each case, find the difference between 
case MTT and control mean MTT, and use the one sample method of 
Section 8 . 3 .  
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Exercise 15M 

1 .  (a) T, ( 1 5 .4) .  (b) F, this is measured by sensitivity { 1 5 .4) . (c) T, ( 1 5 .4) . 
(d) F, this is the proportion agreeing ( 1 5 .4). (e) F, we need the sensitivity as 
well ( 1 5 .4) . There are other things, dependent on the population studied , 
which may be important too, like the false positive rate. 

2. (a) T, ( 1 5 . 1 ) .  (b) F, this would depend only on how variable were the 
true values which we were trying to measure. (c) T, ( 1 5 . 1 ) .  {d) T, ( 1 5 . 1 ) .  
(e) F ,  unless the measurement process changes the subject , we would expect 
this to be zero . 

3 .  (a) F ,  we expect 5 per cent of 'normal ' men to be outside these limits 
.( 1 5 . 5) . (b) F, see (a) . (c) F, he may have a disease which does not produce an 
abnormal haematocrit. (d) F, this reference range is for men . Women may 
have a different distribution of haematocrit and it is dangerous to extrapolate 
the reference range to a different population. In fact ,  for women the 
reference range quoted was 35 . 8  to 45 .4, putting a woman with a haematocrit 
of 48 outside the reference range. (e) T, the haematocrit outside the range 
suggests it, although it does not prove it .  

4. (a) T ,  it is based on fewer potential survivors ( 1 5 .6). (b) F, they con
tribute half an interval at risk ( 1 5 .6) . (c) T, if survival rates change those 
subjects starting later, and so more likely to be withdrawn, will have a 
different survival to those starting earlier. The first part of the curve will 
represent a different population to the second. (d) T, the longest survivor 
may still be alive and so become a withdrawal. (e) T, ( 1 5 .6). 

5. (a) T,  ( 1 5 .2) .  (b) F, ( 1 5 .2) . (c) T, ( 1 5 .2) . (d) T, ( 1 5 . 2) .  (e) F, ( 1 5 . 2) .  

Exercise 15E 

1 .  The blood donors were used because i t  was easy to get the blood . This 
would produce a sample deficient in older people, so it was supplemented by 
people attending day centres . This would ensure that these were reasonably 
active, healthy people for their age. Given the problem of getting blood and 
the limited resources available, this seems a fairly satisfactory sample for the 
purpose. The alternative would be to take a random sample from the local 
population and try to persuade them to give the blood . There might have been 
so many refusals that volunteer bias would make the sample unrepresentative 
anyway. 
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The sample is also biased geographically, being drawn from one part of 
London. In the context of the study, where we wanted to compare diabetics 
with normals this did not matter so much, as both groups came from the same 
place . For a reference range, if there were a geographical factor, the range 
would be biased in other places . To look at this we would have to repeat the 
study in several places, compare the resulting ranges and pool as appropriate. 

2. We want normal, healthy people for the sample , so we want to exclude 
people with obvious pathology and especially those with disease known to 
affect the quantity being measured. However, if we excluded all elderly 
people currently receiving drug therapy we would find it very difficult to 
obtain a sufficiently large sample . It is indeed 'normal' for the elderly to be 
taking analgesics and hypnotics, so these were permitted . 

3 . From the shape of the histogram , the distribution of plasma magnesium 
does indeed appear Normal. Figure 17 . 1 5 shows the superimposed Normal 
curve. 
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Fig. 17.15 Distribution of plasma magnesium in 140 apparently healthy people, 
with superimposed normal curve, mean, and standard deviation. 

4. The reference range, outside which about 5 per cent of normal values 
are expected to lie, is (.X - 2s) to (x + 2s) ,  or (0 . 8 1 0  - 2 x 0.057) to (0. 8 1 0  + 

2 x 0.057), which is 0.696 to 0.924, or 0. 70-0 .92 mmol/litre . 

5 .  As the sample is large and the data Normally distributed the standard 
error of the limits is approximately � 3�2 

= 
3 x

' 0.0572 
1 40 

= 0.008 343 9 
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For the 95 per cent confidence interval we take 1 .96 standard errors on either 
side of the limit , 1 .96 x 0.008 343 9 = 0 .0 16 .  The 95 per cent confidence 
interval for the lower reference limit is 0.696 - 0.0 1 6  to 0.696 + 0.0 1 6  = 

0.680 to 0 . 7 1 2  or 0.68 to 0 .7 1  mmol/litre. The confidence interval for the 
upper limit is 0 .924 - 0.0 1 6 to 0.696 + 0 .0 16  = 0.908 to 0 .940 or 0 . 9 1  to 0.94 
mmol/litre. We can see that the reference range is well estimated as far as 
sampling errors are concerned . 

6. Plasma magnesium did indeed increase with age . The variability did 
not . This would mean that for older people the lower limit would be too low 
and the upper limit too high , as the few above this would all be elderly. We 
could simply estimate the reference range separately at different ages . We 
could do this using separate means but a common estimate of variance, 
obtained like that for the two sample t test in Section 1 0 . 3 .  Or we could use 
the regression of magnesium on age to get a formula which would predict the 
reference range for any age. The method chosen would depend on the nature 
of the relationship . 

Exercise 16M 

I .  (a) F, this is the SMR.  (b) T, ( 1 6 . 1 ) .  (c) F, it is for a specific age group, 
not age adjusted . (d) F, it measures the number of deaths per person at risk, 
not the total number. (e) F, it tells us nothing about age structure. 

2 .  (a) F ,  ( 1 6 .4) .  (b) T, this is how the l ife table is calculated . (c) T, the 
distribution of age at death if these mortality rates apply (Exercise 6E) . (d) T, 
( 1 6 .4) .  (e) T, ( 1 6 .4) .  

3 .  (a) T, i n  fact 7 . 7  times as likely. (b) F ,  age effects have been adjusted 
for. (c) F, i t  may be true, but it may also be that heavy drinkers become 
publicans. It is difficult to infer causation from observational data. (d) F, 
men at high risk of cirrhosis of the liver , i . e. heavy drinkers, may not become 
window cleaners , or window cleaners who drink may change their occupa
tion, which requires good balance. (e) F, they have a low risk. Here the 
'average' ratio is 1 00, not 1 .0. 

4 .  (a) F ,  this tells us about mortality, not population structure. (b) F .  
(c) F, see a .  (d) T, ( 1 6 .6) .  (e) F, a bar chart shows the relationship between 
two variables, not their frequency distribution (5 . 5 ) .  

5 .  (a) T, ( 1 6 .2) .  (b) F ,  ( 1 6 . 5 ) .  (c) F ,  this i s  a rate per 1 000 live births ( 1 6 . 5 ) .  
(d) F, ( 1 6 . 1 ) .  (e) T, does not depend on age distribution ( 1 6 .4) .  
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Exercise 1 6E 

I .  We obtain the rates for the whole period by dividing the number of 
deaths in an age group by the population size . Thus for ages 1 0- 14  we have 
44/427 1 = 0 .010 30 cases per thousand population . This is for a thirteen
year period so the rate per year is 0 .010 30/ 1 3  = 0.000 79 per 1000 per year, 
or 0. 79 per million per year. Table 17 .5 shows the rates for each age group. 

Table 17.5.  Age-specific mortality rates for volatile substance 
abuse, Great Britain, and calculation of SMR for Scotland 

Great Britain a.s .m.r .s  
Scotland Scotland 

per million per thousand population expected 
Age group per year per 13 years (thousands) deaths 

0-9 0.00 0.000 00 653 0 .000 00 
1 0- 1 4  0.79 0.01 0  30 425 4.3 7 50 
1 5 - 1 9  2.58 0.033 58 447 1 5 .01 0 26 
20-24 0.87 0.01 1 37 394 4.4 9 78 
25-29 0.32 0.004 1 5  342 1 .41 9 30 
30-39 0.08 0.00 1  08 659 0 . 7 l l  72 
40-49 0.03 0.000 33 574 0. 189 42 
50-59 0.09 0.001 1 2  579 0.648 48 
60 + 0.03 0.000 37 962 0.355 94 

TOTAL 27 . 1 92 490 

The rates are unusual because they are highest among the adolescent 
group, where mortality rates for most causes are low. Anderson et al. ( 1 985) 
note that ' . . .  our results suggest that among adolescent males abuse of 
volatile substances currently account for 2 per cent of deaths from al l  causes 
. . .  ' The rates are also unusual because we have not calculated them 
separately for each sex. This is partly for simplicity and partly because the 
number of cases in most age groups is small as it is. 

2 .  The expected number of deaths by multiplying the number in the age 
group in Scotland by the death rate for the period, i .e. per thirteen-years, for 
Great Britain. We then add these to get 27 . 1 9 deaths expected altogether. We 
observed 48 , so the SMR is 48/27 . 1 9  = 1 .76, or 1 76 with Great Britain as 
100 .  

3 .  We find the standard error of the SMR by .JOIE = .../48/27 . 1 9  = 
0.2548 . The 95 per cent confidence interval is then 1 .76 - 1 .96 x 0.2548 to 
I .  76 + 1 .96 x 0.2548, or 1 .26 to 2.25 . With Great Britain as 100 we get 1 26 to 



Exercise 16E 351  

225 . The observed number i s  quite large enough for the Normal 
approximation to the Poisson Distribution to be used . 

4. Yes, the confidence interval is well away from zero . Other factors relate 
to the data collection, which was from newspapers, coroners, death 
registrations etc . Scotland has different newspapers and other news media 
and a different legal system to the rest of Great Britain .  It may be that the 
association of deaths with VSA is more likely to be reported there than in 
England and Wales . 
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class interval 54, 58-6 1 
cli nical trials 6 

allocat ion 7- 1 5  
assessment 2 1 -2 
cross-over 1 7- 1 8  
double bl ind 22 
eth ics 2 1 ,  25 
placebo effect 20- 1 
randomization 8- 1 3  
sample size 1 60- 1 ,  1 64 
seq uential 25 

cluster sampling 34, 35 
coefficient of correlat ion, see correlat ion 

coefficient 
coefficient of  regression , see regression 

coefficient 
coefficient of  variat ion 277 
coeliac diseases 1 76-9, 22 1 
cohort study 43-4 
coins 8-9, 95-9 
colds 76, 256-8 
combinations 1 05-6 
common variance 1 73 
comparison 

of  methods of  measurement 280 
of two groups 1 40-3 , 2 1 7-24, 247, 

265 , 267-8 
within one group 1 49-5 1 ,  1 69-72, 

224-7, 265, - 268-9,  27 1 ,  280-3,  
293-4 

compliance 1 86-7, 240 
computer 

in  diagnosis 29 1 -3 
in random number generation I O ,  1 2 , 

1 1 9 

in statist ical analysis 3-4, 57 ,  69, 1 27 ,  
208 

confidence interval 1 38-40, 238,  266-7 
correlation coefficient 207 
di fference between means 1 40-2 1 75 

1 79, 267-8 
' ' 

di fference between proport ions 1 42-3 , 
246-7, 267-8 

mean 1 39, 1 69-70, 268-9 
normal range 286-8 
percentile 288 
predicted value in regression 1 99-200 
proportion 1 40 
quantile 288 
reference range 286-8 
regression coefficient 1 95-7 
regression est imate 1 98-9 
and significance tests 1 56 ,  238 
SMR 3 1 0-2 
for t ransformed data 1 78-9, 1 87 ,  287 

confidence limits 1 39 ,  see also con fi
dence interval 

cont ingency table 24 1 -55,  268, 27 1 
con tinuity correct ion 236- 8 ,  254-5 

chi-squared test 254-5 
Kendall's ran k correlation coeffi

cient 237-8 
Mann Whit ney U test :!36-7 
McNemar's test 257 

continuous variable 5 1 ,  .:A, 96, 1 1 2 
contro l  group 

in case control st udy 4 1 -2 
in clin ical t rial 7 

coronary artery disease 1 62 
coronary thrombosis 1 3 ,  43 
cornflakes 48-50 
correlation 203-9, 270- 1 

coefficient 204-8 , 236, 269-7 1  
confidence interval 207 
linear relat ionship 205-6 
mat rix 209 
negat ive 204 
posit ive 204 
r 204 
r2 207 
ran k ,  see ran k correlation 
signi ficance test 207-8 
table 208 
zero 204, 206 

cot death 27-9 
cough 38-9, 45, 1 40,  1 4 1 -3 ,  1 55-6, 

246-7 ,  247-50 
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Crohn ' s  disease 48-50, 1 76-9 
cross-classi fication 24 1 
cross-over trial 1 7- 1 8 , 1 48-9, 265 , 273 
cross-sectional study 3 8-9 
cross-tabulation 241 
crude death rate 298 
crude mortality rate 298 
C-T scanner 6-7, 75 
cumulative frequency 5 3 ,  57-8, 63 

death 1 04 
death certificate 297 
death rate, see mortality rate 
decision tree 292-3 
degrees of freedom 

Chi-squared Distribution 1 29, 1 3 1  
chi-squared test 243-4 
correlation 208 
regression 1 96 
t Distribution 1 66,  1 67 
t method 1 70, 1 73 
t test see t method 
variance estimate 66, 69-72 

delivery 274 
demography 302 
denominator 76 
dependent variable 1 90 
Derbyshire 3 5 ,  3 8-9, 45-6, 140 
deviation 

from assumptions 1 79-82, 202 
from mean 65-6 
from regression l ine 1 9 1 -2 
standard, see standard deviation 

diabetes 1 47 
diagnosis 40, 5 3 ,  93 , 283-5 , 29 1 -3 
diagnostic test 283-5 
diagrams 80-9 

bar 80-3 
pie 80- 1 
scatter 84-5 

dice 9, 1 0, 99 
dichotomous scale 266-9 
differences 1 8 ,  1 49-5 1 ,  169-72, 224-7, 

265 , 268-9, 27 1 ,  280-3 , 293-4 
di fferences between two groups 1 40-3 , 

2 1 7-24, 247,  265 , 267-8 
digit preference 278-80 
direct standardization 299-300 
discharge 53  
discrete data 5 1 
discrimant analysis 27 , 291 -3 

distribution 
Binomial 98- 1 0  I ,  103-4 
Chi-squared 1 29-3 1 ,  258-60, 244 
cumulative frequency 55 ,  57-8, 63 
F 1 3 1  
frequency 5 1 -4 
-free methods, same as non-

parametric methods 
Normal 1 1 6-29, 1 65-8,  1 79,  1 82-3 
Poisson 1 04-5, 1 20 
Rectangular 1 1 8-20 
t 1 3 1 ,  1 65-8 
Uniform 1 1 8-20 

doctors 43 , 75 ,  93,  300-2 
Doll 40-4 

election 35-6 
electoral roll 34, 36 
enumeration district 30 
epidural 274 
error 

first and second kind 1 52 
measurement 276-8, 293-4 
standard, see standard error 
term in regression model 1 90 
types I and 1 1 ,  same as first and second 

kind 
estimate 66 , 69-72, 1 3 8-9, 1 97-9 
estimation 1 34, 1 3 8-9, 1 69 
ethics of clinical trials 2 1 ,  25 
expectation 101 

of  a distribution 101  
of  Binomial Distribution 1 03 
of Chi-sq uared Distribution 1 30 
of sum o f  squares 106-8 
of l ife 1 1 1 ,  303-4, 308 

expected frequency 242-3 
expected value, see expectation 
experiments 6 

clinica l ,  see cli nical t rials 
design of  6 
factorial 24-5 
laboratory 22-3 

experimental unit  24 
expert system 293 
exploratory data analysis 60 

F Dist ribution 1 3 1  
F test 1 74, 268 
factorial I 05-6 
factorial experiment 24-5 
false positives 285 
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Farr 2 
fatality rate 305 
fertility 1 53-4, 305 , 308 
fertility rate 305, 308 
fever tree 38 
FEVI 54-9, 64-5, 68, 84-5 , 1 38-9, 1 88, 

279, 288-9 
Fisher 2,  44, 207 
Fisher's exact test 25 1 -4, 255, 260- 1 ,  

267-8, 270- 1 
Forced Expiratory Volume, see FEVI 
fractured rib 285 
frequency 53 

cumulative 53 ,  57-8, 63 
density 59-60, 1 1 3 
distribution 5 1 -7 ,  68-9 
expected 242-3 
per unit 59-60 
polygon 58 ,  63 
and probability 95 
proportional 53 
relative 53 ,  1 1 3 
in tables 24 1 

Galton 1 89 
geriatric 94, 263 
gastric pH 273-4 
gee whiz graph 87 
geometric mean 1 79 
gestational age 202 
glucose 74, 1 33 
glue sniffing 3 1 0 
Gossett 168,  see also Student 
gradient 1 8 8  
graphs 80-9 

bar 80-3 
line 85-9 
scatter 84-5 

group comparison 1 40-3 , 2 1 7-24, 247, 
265 ,  267-8 

grouping of data 1 79 

health 45 
health centre 228-30 
heatwave 264 
Hedges 44-5 
height 84-5, 95-6, 1 25 ,  1 88 ,  2 1 3- 1 5  
Hill 2 ,  7-8, 40-4, 57, 69 
histogram 58-62, 68-9, 80 
house dust mite 274 
Huff 84, 87 
Huskisson 20- 1  

hypercholesterolaemia 6 1 -2 
hypertension 274 
hypothesis 1 49, 1 5 1  

ICD 77-8 
ileostomy 273-4 
incidence rate 305 
independent events 96 
independent random variables 1 03 
independent variable in regression 1 90 
indirect standardization 300-2 
infant mortality rate 305 
intercept 1 88 ,  1 98-9 
International Classification of Diseases 

77-8 
interval estimate 1 38-40, see also confi

dence interval 
interval scale 216 ,  266, 27 1 

Kaposi's  sarcoma 76, 1 28-9, 227-30 
Kendall's rank correlation coefficient 

224, 230-6, 237-8, 270- 1 
continuity correction 237-8 
tau 230-6 
table 235 
ties 232-6 

Kent 46, 256 
knowledge based system 293 

labour 274 
laboratory experiment 22-3 
Lanarkshire milk experiment 1 4  
laparoscopy 1 53-4 
large sample 1 39- 143,  1 54-8 , 1 8 1 -4, 

24 1 ,  243-6, 266-9 
least squares method 1 91 -2, 209- 1 0  
Lee 1 62 
life expectancy 1 1 1 , 303-4, 308 
life tables 1 1 0,  289-9 1 ,  302-5 
line graph 85-8 
linear regression, see regression 
Literary Digest 35-6 
log, see logarithm ,  logarithmic 
logarithm 89-91 

base of 89, 91  
logarithmic scale 88-9 
logarithmic transformation 1 25-6, 

1 76-9, 202, 278, 287 
to additive relationship 9 1  
and confidence intervals 1 78-9, 1 87,  

287 
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to  equal variance 1 76-8, 202, 278 
to linearity 91 , 202 
to Normal Distribution 1 25-6, 1 76-8 
to symmetry 9 1  

Lognormal Distribution 90, 1 25-6 
logrank test 29 1 
Louis 2 
lung cancer 39-40, 40-4, 46, 75 ,  302 
lung function 1 4 1 -2, 275 , see also FEVI, 

PEFR 

McNemar's test 255-8, 268-9 
magnesium 147,  295-6 
malaria 38 
Mann-Whitney U test 2 1 7-24, 267-8 

continuity correction 236-7 
table 220 
ties 22 1 -4 

marginal totals 242 
matching 42, 255 ,  265 , 268-9 
maternal mortality rate 305 
mean 64-5 , 68-9 

arithmetic 64 
confidence 

1 69-70 
interval for 1 39-40, 

comparison of two 1 40-2, 1 54-6, 
1 72-5 , 267-8 

difference between two 1 40-2, 1 54-6, 
1 59-6 1 ,  1 72-5 , 267-8 

geometric 1 79 
of population 69 
of probability distribution IOI 
of a sample 64-5,  69, 1 3 1 ,  1 35 
sampling distribution of 1 34-8 
standard error of 1 37 

mean transit time 274 
measurement error 276-8,  293-4 
median 63-5 
Medical Research Council 1 2  
methods o f  measurement 276-8 , 280-4 
mice 23 
mild hypertension 274 
milk 1 4  
minimisation 1 4-5 
mini Wright peak flow meter 1 69,  1 72, 

1 74 
missing denominator 76 
missing zero in graphs 83 ,  85-7 
mites 274 
mode 6 1  
mortality rate 297-300 

age specific 298, 302 

age standardized 297-300 
crude 298 
infant 305 
neonatal 305 
perinatal 305 

multiple regression 203 
multiple significance tests 1 6 1 -2 
mutually exclusive events 96 

neonatal mortality rate 305 
New York 7 
ninety-five per cent confidence interval, 

see confidence interval 
ninety-five per cent reference range, see 

reference range 
nitrite 273-4 
nominal scale 2 1 6, 266-71  
non-parametric methods 2 1 6-7 ,  238, 

24 1 
Normal curve 1 20-2 
Normal Distribution 1 1 6-29 

in confidence intervals 1 39-43,  267-9 
in correlation 207 
derived distributions 1 29-3 1 
independence of sample mean and 

variance 1 3 1  , 286 
as limit 1 1 6-20 
and normal range 286 
of observations 1 25-6, 1 33 ,  1 43 ,  286 
and reference range 286 
in regression 1 9 1 ,  1 96, 20 1 -2 
in significance tests 1 54-8, 1 59-6 1 , 

267-9 
tables 1 2 1 , 1 23 
in t method 1 64-7 , 1 69-73 ,  1 75-84 

Normal plot 1 26-9, 1 33 ,  1 70- 1 
Normal probability paper 1 27 
normal range, see reference range 
null hypothesis 1 49, 1 5 1  

observational studies 6 ,  30 
observed and expected frequencies 

24 1 -3 
Office of Popuiation · Censuses and 

Surveys 297 
one-sided test J 52-4, 253-4 
one-tailed test 1 5 2-4, 253-4 
ordinal scale 2 1 6, 266-7 1  
ordered nominal scale 266-7 1  

p as probability in significance test 1 68 
P.(02) 1 86-7, 240 
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paired data 265 , 268-9 
McNemar's test 255-8, 268-9 
t method 1 69-72, 268-9 
sign test 1 49-5 1 ,  268-9 
Wilcoxon test 224-7, 268-9 

parametric methods 2 1 6-7, 238 
parathyroid cancer 289-9 1 
parity 54, 93 
peak expiratory flow rate, see PEFR 
peak flow meter 1 69, 1 74, 276-7, 279, 

280-3 
Pearson's correlation coefficient, same 

as correlation coefficient 
PEFR 1 27-8,  1 4 1 -2, 1 55-6, 1 59-60, 

169-72, 1 74, 2 1 3 - 1 5 , 274-5, 276-83 
percentage 75-6, 79-80, see also 

proportion 
percentage point 1 22-3 
percentile 206-8 
perinatal mortality rate 305 
permutation 1 05 
pH 273-4 
phlegm 1 56,  1 59 
phosphomycin 76 
pie chart 80- 1 
placebo effect 20- 1 
point estimate 1 38-9 
Poisson Distribution 1 04-5 , 1 20, 1 76, 

258 
used for mortality data 302 

poliomyelitis 1 5- 1 7 ,  93, 1 64 
polynomial regression 203 
population 3 1 -2 

census 30 
mean of 1 38-9 
national 30, 3 1 ,  305-8 
projection 304 
restricted 37 
standard deviation of 1 36-7 
statistical usage 3 1 -2 

population pyramid 305-8 
power 1 59-60, 1 6 1 , 1 70, 224, 225 , 227 , 

236, 238 
precision 276-8 
predictor variable 1 90 
pregnancy 54 
prevalence 39, 305 
probability 95-6 

additive rule 96 
density function 1 1 5-6 
distribution 97-8, 1 0 1 -3 
of dying 289, 302-4 

multiplicative rule 96 
paper 1 27 
in significance tests 1 5 1  
o f  survival 289-9 1 ,  302-4 

product moment correlation coefficient, 
see correlation coefficient 

pronethalol 1 7 - 1 8 ,  1 48-5 1 ,  224 
proportion 75-6, 79-80 

confidence interval for 1 40 
denominator 76 
difference between two 1 42,  1 57 ,  1 58 ,  

1 64,  247, 267-8 
standard error 1 40, 1 57 
in tables 79-80 
of variability explained 1 96,  207 

proportional frequency 53  
prospective study 43 
pyramid 305-8 

qualitative data 5 1 ,  80- 1 ,  2 1 6,  241 ,  266 
quantile 63-4, 286-8 

confidence interval 288 
quantitative data 5 1 ,  8 1  
quartile 63-4 
questionnaires 44-6 
quota sampling 32 

r, see correlation coefficient 
random allocation 8- 1 3  
random blood glucose 74 
random numbers 9- 1 0, 1 2  
random sampling 3 3-6 
random variable 95 , 97-8 

addition of constant 1 02 
expected value of 1 0 1  
di fference between two 1 03 
mean of I O I  
multiplied by constant 1 02-3 
sum of two 103 
variance of  1 0 1 -2 

randomization 8-1 3 ,  1 7  
randomizing devices 8- 1 0  
range 65 

interquartile 65 
normal , see reference range 
reference, see reference range 

rank correlation 227, 270-1 
choice of 236 
Kendall 's  230-6, 270- 1 
Spearman 's  227-230, 270- 1 

rank order 2 1 7 ,  222 
rank sum tests 2 1 7-27 , 267-9 
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one sample 224-7, 268-9 
two sample 2 1 7-24, 236-7, 267-8 

rate 75 
age specific mortality 298 , 302 
age standardized mortality 297-300 
attack 305 
birth 305, 308 
case fatality 305 
denominator 78 
fertility 305, 308 
infant mortality 305, 308 
maternal mortality 305 
mortality 297-300 
multiplier 77 
neonatal mortality 305 
perinatal mortality 305 
prevalence 305 
response 35 
stillbirth 305 

rats 23 
reciprocal transformation 1 76, 1 78 
Rectangular Distribution 1 1 8-20 
reference range 1 43 ,  286-8 , 295-6 

confidence interval for 286-7, 288 
by direct estimation 287-8 
using Normal Distribution 286 
using transformation 287 

registration of deaths 3 1 ,  269-7 1  
regression 1 88-2 1 5 ,  269-7 1 

assumptions 202 
coefficient 1 93 ,  1 95 
and correlation coefficient 206-7 
dependent variable 1 90 
deviations from 1 9 1 -2 
equation 1 93 
estimate 1 97-9 
gradient 1 88 
independent variable 1 90 
intercept 1 88 ,  1 98-9 
least squares principle 1 9 1 -2, 209- 1 0  
line 1 94 
linear 1 93 
multiple 203 
outcome variable 1 90 
perpendicular distance from line 

1 9 1 -2 
polynomial 203 
prediction 1 97-200 
predictor variable 1 90 
residual sum o f  squares 1 96 
residual variance 1 96 
residuals 200- 1 

significance test 1 96-7 
slope 1 88 ,  1 93 ,  1 95-7 
standard error 1 96,  1 98-9, 2 1 0- 1 1 
sum of products 1 93 
sum of squares due to 1 96 
sum of squares about 1 96 
towards the mean 1 90 
variability explained 1 96, 207 
variance about line 1 96, 2 1 0  

relationship between variables 1 88-95 , 
203-7 , 227-36, 246-55 , 265 , 269-7 1 

relative frequency 53 ,  1 1 3 
repeatability 276-8 
residuals 

within groups 1 77 
about regression line 1 96, 200- 1 

respiratory disease 35 
respiratory symptoms 38-9, 8 1 -2, 

1 40-3 , 1 55-6, 256,  see also cough 
response bias 20- 1 ,  35-6, 43-4 
response rate 35 
retrospective study 43 

s2 67 , see also standard deviation, 
variance 

Salk vaccine 1 5- 1 7 ,  1 64 
sample 3 1 ,  see also sampling 
sample, large 1 39- 143,  1 54-8, 1 8 1 -4, 

24 1 , 243-6, 266-9 
sample, small 1 43 ,  1 65-84, 244-6, 

267-7 1 
sample size 1 44-5 , 1 60- 1 ,  1 64 
sampling 32-40 

in clinical studies 36-7 
cluster 34, 35 
distribution 1 34-5 , 1 37-8 
in epidemiological studies 38-40 
experiment 70-2, 1 34-7, 1 68-9, 

1 79-84 
frame 33 
multi-stage 34 
quasi-random 35 
quota 32 
random 33-6 
simple random 33-6 
stratified 35 
systematic 35 

scatter diagram 84-5,  1 88-9 
scattergram 84-5 , 1 88-9 
schoolchildren 1 4, 1 5-7, 24, 3 5 ,  38-9, 

45-6, 8 1 -2, 1 40, 1 4 1 ,  1 42, 1 5 5 ,  1 5 8 ,  
246-7 , 25 1 ,  256 
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screening 1 7 ,  89, 283 
selection of subjects 

in clinical trial 1 8-20 
in case control study 4 1 -2 
self 1 5- 1 7 ,  35 ,  43 

self selection 1 5- 1 7 ,  35,  43 
sensitivity 283 
sequential trial 25 
sex 2 1 3 ,  297, 303, 305-7 
sign test 1 49-5 1 ,  1 70, 225 , 227, 256, 

268-9 
signed rank test, same as Wilcoxon one 

sample test 
significance level 1 52 
significance test 1 40-62, 1 70, 1 75 ,  267 

in subsets 1 66 
significant digits 76-7 
significant difference 1 5 1  
significant figures 76-7 
skew distribution 62, 1 25 ,  1 76-7 , 1 79-8 1 
skinfold 1 76-8, 221 
slope of regression line 1 88 ,  1 93 ,  1 95-7 
small sample 143 ,  1 65-84, 244-6, 

267-7 1 
SMR 301-2 
smoking 24, 35 ,  38-9, 40, 4 1 ,  43-4, 

45-6, 8 1 -2,  1 38-9, 247-25 1 
Snow 2 
Spearman 's  rank correlation coefficient 

227-230, 236, 270- 1 
table 230 
ties 230 

specifity 283-5 
square root transformation 1 76-8 
standard deviation 65 , 67-9 

degrees of freedom for 66, 69-72 
of differences 276, 282, 293-4 
of probability distribution 1 02 
of population 1 36 
of sample 67-9, 1 3 1  
of sampling distribution 1 3 7  
and standard error 1 3 8  
standard error of 1 43 

standard error 1 37 
of difference between means 140-2, 

173 
of difference between proportions 

1 42-3 , 1 57 
of mean 1 37-8 
of  predicted value in regression 

1 99-200 
of proportion 1 40 

of reference range 280-7 
of regression coefficient 1 95-7 
of regression estimate 1 97-8 
of SMR 30 1 -2 
and standard deviation 1 3 8  
o f  standard deviation 143 

Standard Normal Distribution 1 20-4, 
1 55 ,  1 66-7 , 1 82-4, 223 

standardized mortality ratio 300-302 
st:;.ndardized mortality rate 299-300 
standard population 299, 300 
statistic 5 1  

test 1 5 1  
vital 305 

stem and leaf plot 60- 1 
step function 57,  291 
still birth rate 305 
stratification 34-5 
streptomycin 1 1 - 1 2, 1 9, 2 1 -2,  89, 24 1 ,  

245 
stroke 6-7 
Student 14 ,  1 68 
Student's t Distribution, see 

Distribution 
subsets 1 62 
sudden death 27-9 
sum of products about mean 1 93 ,  203-4 
sum of squares 

about mean 66-7, 70, 72, 1 06-9 
about regression 1 96,  2 1 0  
due to regression 1 96 
expected value of 1 06-8 

summation 64-5 
survey 3 1 -3 ,  35-6, 44-6 
survival curve 291 
survival rate 291 
symmetrical distribution 62 

t Distribution 1 3 1 ,  1 65-9, 1 84 
and Normal Distribution 1 65-6 
degrees of freedom 1 3 1 ,  1 66,  1 7 3  
shape o f  1 68 
table 1 67 

t method 
assumptions of 1 65 ,  1 70-2, 173 ,  1 75 ,  

1 79-82 
deviation from assumptions 1 70-2, 

1 75 ,  1 79-82 
difference between means in matched 

sample 1 69-72, 268-9 
difference between means in two sam

ples 1 72-5 , 224, 26 -8 
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paired 1 69-72 
regression coefficient 1 96-7 
single mean 1 66-7 

t test, see t method 
tables of probability distributions 1 2 1 ,  

1 23 ,  167, 208 , 220, 226, 230, 235, 
244 

tables, presentation of 7 1 -80 
tally 57 
Tanzania 76, 227 
test statistic 1 5 1  
test, diagnostic 283-5 
ties in rank tests 22 1 ,  227 
ties in sign test 1 49 
time 75 
time series 85-8 
transformations 1 75-9, 202, 286-7 

and confidence intervals 1 79, 1 87 ,  287 
to linearity 202 
logarithmic 1 25-6, 1 76-9, 1 87,  202, 

278, 286-7 
to Normal Distribution 1 25 ,  1 76-9, 

266-7, 286 
reciprocal 1 76-8 
square root 1 76-8 
to uniform variance 1 78 ,  202, 277-8 

treatment 6 
treated group 6-8 
trend in contingency tables 247, 267-8, 

270- 1 
chi-squared test for 247-5 1 ,  267-8, 

270- 1 
triglyceride 62, 64, 69, 1 25-6, 287-8 
tuberculosis 7-8, 1 2, 19, 88-9, 24 1 ,  245 
Tukey 60, 63 
two-sided test 1 52-4 
two-tailed test 1 52-4 

unexpected d�ath 27-9, 37 
Uniform Distribution 1 1 9-20 
uniform variance 1 73 ,  1 75 
unimodal distribution 6 1  
urinary nitrite 273-4 

variability 65, 276 
variability explained by regression 1 96, 

207 
variable 5 1  

random see random variable 

variance 65-8, 1 02 
about regression line 1 96, 2 1 0- 1 1 
analysis of 270- 1 
common 1 73 
comparison of two 268 
comparison in paired data 269 
degrees of freedom for 66, 69-72, 

1 06-9 
estimate 66, 69-72 
of probability distribution 1 0 1 -2 
of random variable 1 0 1 -2 
residual 1 96, 2 1 0- 1 1 
of sample 66-8, 1 06-9 
uniform 173 ,  1 75 
within subjects 293 

variation, coefficient of 277 
Victora 76 
vital statistics 305 
volatile substance abuse 3 1 0- 1 1 
volunteer bias 7, 1 5- 1 7, 35 ,  37 
VSA 3 1 0- 1 1 

wheeze 275 
whooping cough 275 
Wilcoxon test 

matched pairs 224-7 ,  286-9 
one sample 224-7, 286-9 
table 226 
signed rank 226 
two sample 224 

withdrawn from follow-up 289 
Wright peak flow meter 1 69, 1 74,  276-7, 

280-3 

x 65, see also sample mean 
X-ray 2 1 -2,  89, 285 

Yates 257 
Yates' correction 254-5 , 267-9 

zero, missing 83, 85-6 

xi, see chi-squared 
µ. 1 02,  see also population mean 
p see Spearman's rank correlation 

coefficient 
E 64-5 
a2 102, see also variance 
r see Kendall ' s  rank correlation 

coefficient 









This is a textbook in medical statistics for medical students, doctors, 

medical researchers, and others concerned with medical data. It 
should also be of interest to students of statistics who wish to learn 

about the practical application of statistical methods. It contains all 
the material required for a medical degree and for most post-graduate 
qualifications. 

The fundamental concepts of study design and statistical inference 
are explained by illustration and example, and, for those who wish 
to go further, the mathematical background is also described. The 
material covered includes the design of clinical trials and 
epidemiological studies, summarizing and presenting data, proba
bility, standard errors, regression and correlation, rank methods, 

measurement error, reference ranges, mortality data, vital statistics, 
and the choice of statistical method. 

The book is firmly grounded in medical research and the interpreta
tion of the results of statistical calculations is emphasized. All the data 
in the many examples are real, from the author's own research and 
statistical consultation or from the medical literature, to which 

reference is made where possible. There are 75 multiple-choice ques
tions, with annotated solutions, and 15 exercises in study design and 
data analysis, with fully explained solutions. 

Reviews 
. . .  a book which I think anyone teaching an introductory course in medical 

statistics should seriously consider as the main text to accompany their 

course . . . .  It covers all the material which is likely to be needed at medical 

undergraduate level and for the various professional exams. 

Statistics in Medicine 
At last I have a book on medical statistics that I can safely recommend to 

my students! 

Journal of the Royal Statistics Society 
If you want to understand some of the statistical ideas important to medicine 

but fear being overwhelmed by mathematics you will welcome An 
Introduction to Medical Statistics by M Bland . . . .  Altogether a useful introduc

tion to medical statistics. 

British Medical Journal 
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